Nuclear fusion: power to the people?

Or just political hot air?

Analysis It's G8 week, and climate change is high on the agenda. And now that even George Bush has acknowledged that climate change is (a) happening and (b) is at least partly due to humans but insisted it (c) should be tackled through technology, why not focus again on a technology that's (1) happening and (2) partly controlled by humans?

That is, nuclear fusion. Unlike fission, already used to produce most of France's electricity, fusion isn't commercial yet. Even its most positive advocates reckon it'll be more than 25 years before a fusion reactor could contribute usefully to the power grid ("useful" being defined as a steady output of 1 gigawatt; the UK has about 42 GW of installed electric plant).

But it does have one very important advocate, and another who is coming along for the ride, and they're both G8 leaders. The advocate: Tony Blair. The one along for the ride: George Bush. Plus it also involves two other G8 nations, France and Japan, directly, as they'll get tons of money from contracts to build the next stage in the long, long road to commercial fusion.

Last week France was chosen as the site for the International Thermonuclear Experimental Reactor (Iter) project, beating Japan's bid. If it works, ITER will take in 50 megawatts of power and put out between 500 and 1,000 MW. That's right - it could power itself.

Here's how. Fusion is what powers the stars. They burn by slamming two hydrogen nuclei (protons) together, to produce a helium nucleus (two protons) and some extra particles. (See the whole system here.)

On Earth, we cheat a little by fusing a nucleus of deuterium (hydrogen with a neutron aboard) with one of tritium (hydrogen with two neutrons), to produce a helium nucleus plus lots of energy in the form of a "fast" neutron. Simple on paper; fiendishly hard in practice. You have to heat the material to about 100 million Centigrade until it becomes "plasma", confine it using magnetic fields, and compress it so fiercely that you overcome the natural tendency of nuclei to repel each other as fiercely as Steve Ballmer encountering an iPod.

Deuterium is plentiful. There's enough in a bath to generate all the energy you'd need in your lifetime. Tritium is trickier, produced either from deuterium fusion, or other decay products. It's used in nuclear weapons, exit signs that work without power, and some illuminated watches.

If you can control the fusion reaction and keep it going, you produce huge amounts of "fast" neutrons which heat up the reactor vessel. That heat can produce steam which can turn turbines to generate electricity. Nuclear waste? Well, the reactor walls might be a little radioactive after you stop; but in 10 years' time you could reuse the parts in another reactor. Tritium is poisonous, but wouldn't get out. And the reaction can't run away like fission can; if the magnetic "bottle" fails, the reaction stops.

Big science

The politics similarly involves bashing people's heads together at sufficient pressure to produce a solid project and a fast-moving schedule to make it happen. For years fusion was on the slow track. That's because it's big science, and thus big politics are involved to make it happen. Although the Joint European Torus project in Abingdon, Oxfordshire, managed to generate 80 per cent of the power put into it - falling just short of being self-sustaining - it demonstrated what could be done. In 1985 Ronald Reagan signed an agreement with Mikhail Gorbachev to work towards ITER, with the aim of producing a prototype commercial reactor this century.

But in 1998 Bill Clinton's administration withdrew from ITER, citing costs, and the US began going it alone with its own FIRE fusion project.

And ITER will cost. The budget is estimated at $12bn - shared between Europe, the US, China, Korea, Japan and Russia - and a lifespan of about 30 years. Then again, that's only £6.6bn at present exchange rates. That would buy you a British national ID card scheme; in fact Britain's share is much less, and it could even generate £100m of revenues for British businesses annually.

But what's remarkable is how fusion has abruptly moved up the agenda. It's not for scientific reasons though, but politics. And it comes down to one person: Tony Blair.

He's come under pressure at home from Professor Sir David King, the government's chief scientific adviser, to do something on climate change. In 2001, he headed a European panel looking for a fast-track to fusion, and concluded (PDF) it was feasible. The problem is that renewables like wind, waves and solar can't cover the energy shortfall once the UK's nuclear power stations go offline around 2020; presently fission produces 25 per cent of the UK's electricity.

Building more nuclear fission stations looks the easy option, but Margaret Beckett, at the Department of Environment, Food and Rural Affairs, hates them and talks them down as fiercely as King talks them up. She sees them as vote-losers because nuclear waste disposal gives environmental groups a stick to beat Government with. By contrast, the only criticism (though it's a zinger) environmental groups like Greenpeace have of fusion is that it's a lot of money that could be spent subsidising or building renewables now.

That makes fusion the politically acceptable solution. Professor King likes it, Beckett doesn't dislike it, and the greens can't hang you for it. So two years ago at a Camp David summit Blair himself persuaded Bush to rejoin ITER and stop funding FIRE. (In such ways is political goodwill generated by supporting the US over Iraq recouped.)

So, note a key passage in Dubya's interview with ITN about how to get around climate change: "If people want to come together and share technologies and develop technologies and jointly spend - and spend money on research and development, just like the United States is, to help us diversify away from fossil fuels, [I am] more than willing to discuss it. I know we need more nuclear power in order - nuclear power, after all, is not dependent on fossil fuels and emits no greenhouse gases."

Note he doesn't specify what sort of nuclear power, and how he does emphasise coming together on R&D; though the US did oppose the siting of ITER in France, preferring the rival site, Japan, which would thus have got the guaranteed construction jobs and contracts. Why? Well, which country supported the US on its Iraq adventure, and which didn't? As we said - politics, not science, rules here.

But once the politicians have gone away, ITER's scientists can get on with the task. Which isn't trivial. But right now they're as happy as dogs with two tails, especially compared to a few years ago when it seemed the entire fusion project would run into the dirt. The arrival of climate change as a political hot potato has given their cause new fuel, and they're burning it as quickly as possible.

Big question

The big question is, can it work? Can "hot" fusion ever be commercial? We'll deal with that in just a moment.

But first, some think that commercial fusion is much closer than grand projects like ITER make it seem. For them, cold fusion never went away, just went underground, much like its "hot" sibling. The publication in April of a letter in the science journal Nature by a team at UCLA who apparently achieved small-scale fusion in a laboratory has had some people agog.

The trouble is that it's not going to generate cheap electricity. It seems to work, but doesn't scale: you can't get more energy out than you put in. So this crystal-based technique could produce fast neutrons, for radiotherapy or X-ray machines; but not a power generator. "It's very interesting, but it's not a power source," says Chris Carpenter, spokesman at JET. "These small-scale things aren't viable because they don't scale up."

For that, you need something like ITER - because hot fusion does scale, gloriously. ITER will only be twice the size of JET, yet should generate more than 75 times as much power.

And the potential? "You have an energy market that's worth about $3 trillion worldwide annually, and electricity is one-third of that," says Carpenter. "If we invest big now in fusion, then it could pay off. OK, perhaps it won't work; in that case we've found out sooner, and we can try something else to generate the power we need. We aren't saying fusion is the only option. But it's probably the only non-polluting, large-scale option."

But what's changed since JET was built to make it any more likely that fusion won't remain forever 30 years in the future? The materials, says Carpenter, and the computers. From helium-cooled superconducting magnets to tungsten chamber walls to supercomputers that can calculate how the plasma will behave far more accurately and quickly than ever before, the pieces are all there, waiting for the politicians to sign off the cheques and shake hands.

Sorry, by the way, if you thought that solving the world's energy problems was about something as trivial as science. As might be clear, it's really all politics.

And finally: fusion scientists have managed to get all this cash without enlisting Sir Bob Geldof or getting Pink Floyd to reform. Imagine if they had: we'd probably all have fusion-powered cars by now. ®

Related stories

France wins billion dollar fusion research plant
UCLA demonstrates desktop nuclear fusion
The truth about tritium

Other stories you might like

  • Lonestar plans to put datacenters in the Moon's lava tubes
    How? Founder tells The Register 'Robots… lots of robots'

    Imagine a future where racks of computer servers hum quietly in darkness below the surface of the Moon.

    Here is where some of the most important data is stored, to be left untouched for as long as can be. The idea sounds like something from science-fiction, but one startup that recently emerged from stealth is trying to turn it into a reality. Lonestar Data Holdings has a unique mission unlike any other cloud provider: to build datacenters on the Moon backing up the world's data.

    "It's inconceivable to me that we are keeping our most precious assets, our knowledge and our data, on Earth, where we're setting off bombs and burning things," Christopher Stott, founder and CEO of Lonestar, told The Register. "We need to put our assets in place off our planet, where we can keep it safe."

    Continue reading
  • Conti: Russian-backed rulers of Costa Rican hacktocracy?
    Also, Chinese IT admin jailed for deleting database, and the NSA promises no more backdoors

    In brief The notorious Russian-aligned Conti ransomware gang has upped the ante in its attack against Costa Rica, threatening to overthrow the government if it doesn't pay a $20 million ransom. 

    Costa Rican president Rodrigo Chaves said that the country is effectively at war with the gang, who in April infiltrated the government's computer systems, gaining a foothold in 27 agencies at various government levels. The US State Department has offered a $15 million reward leading to the capture of Conti's leaders, who it said have made more than $150 million from 1,000+ victims.

    Conti claimed this week that it has insiders in the Costa Rican government, the AP reported, warning that "We are determined to overthrow the government by means of a cyber attack, we have already shown you all the strength and power, you have introduced an emergency." 

    Continue reading
  • China-linked Twisted Panda caught spying on Russian defense R&D
    Because Beijing isn't above covert ops to accomplish its five-year goals

    Chinese cyberspies targeted two Russian defense institutes and possibly another research facility in Belarus, according to Check Point Research.

    The new campaign, dubbed Twisted Panda, is part of a larger, state-sponsored espionage operation that has been ongoing for several months, if not nearly a year, according to the security shop.

    In a technical analysis, the researchers detail the various malicious stages and payloads of the campaign that used sanctions-related phishing emails to attack Russian entities, which are part of the state-owned defense conglomerate Rostec Corporation.

    Continue reading
  • FTC signals crackdown on ed-tech harvesting kid's data
    Trade watchdog, and President, reminds that COPPA can ban ya

    The US Federal Trade Commission on Thursday said it intends to take action against educational technology companies that unlawfully collect data from children using online educational services.

    In a policy statement, the agency said, "Children should not have to needlessly hand over their data and forfeit their privacy in order to do their schoolwork or participate in remote learning, especially given the wide and increasing adoption of ed tech tools."

    The agency says it will scrutinize educational service providers to ensure that they are meeting their legal obligations under COPPA, the Children's Online Privacy Protection Act.

    Continue reading
  • Mysterious firm seeks to buy majority stake in Arm China
    Chinese joint venture's ousted CEO tries to hang on - who will get control?

    The saga surrounding Arm's joint venture in China just took another intriguing turn: a mysterious firm named Lotcap Group claims it has signed a letter of intent to buy a 51 percent stake in Arm China from existing investors in the country.

    In a Chinese-language press release posted Wednesday, Lotcap said it has formed a subsidiary, Lotcap Fund, to buy a majority stake in the joint venture. However, reporting by one newspaper suggested that the investment firm still needs the approval of one significant investor to gain 51 percent control of Arm China.

    The development comes a couple of weeks after Arm China said that its former CEO, Allen Wu, was refusing once again to step down from his position, despite the company's board voting in late April to replace Wu with two co-chief executives. SoftBank Group, which owns 49 percent of the Chinese venture, has been trying to unentangle Arm China from Wu as the Japanese tech investment giant plans for an initial public offering of the British parent company.

    Continue reading
  • SmartNICs power the cloud, are enterprise datacenters next?
    High pricing, lack of software make smartNICs a tough sell, despite offload potential

    SmartNICs have the potential to accelerate enterprise workloads, but don't expect to see them bring hyperscale-class efficiency to most datacenters anytime soon, ZK Research's Zeus Kerravala told The Register.

    SmartNICs are widely deployed in cloud and hyperscale datacenters as a means to offload input/output (I/O) intensive network, security, and storage operations from the CPU, freeing it up to run revenue generating tenant workloads. Some more advanced chips even offload the hypervisor to further separate the infrastructure management layer from the rest of the server.

    Despite relative success in the cloud and a flurry of innovation from the still-limited vendor SmartNIC ecosystem, including Mellanox (Nvidia), Intel, Marvell, and Xilinx (AMD), Kerravala argues that the use cases for enterprise datacenters are unlikely to resemble those of the major hyperscalers, at least in the near term.

    Continue reading

Biting the hand that feeds IT © 1998–2022