The hunt for water on Mars goes nanoscale

Small packages on Phoenix


If space, as Douglas Adams said, is mind-bogglingly big and the nanoscale is mind-bogglingly small, it seems incongruous to hear that Swiss scientists are going to use the latter, in the form of atomic force microscopy, to explore the former.

Yet that's exactly what the team, led by Urs Staufer, an associate professor at the Institute of Microtechnology at the University of Neuchâtel, will be doing when NASA's Phoenix Mars Lander launches this week*. It is due to land on the Red Planet in March 2008.

It makes more sense when you find out what they're looking for: water. Or, more precisely, signs of past life. In addition, analysing the soil samples should indicate the kind of environment future missions, manned or unmanned, will have to contend with. Of particular concern are quartz particles, which pose a health hazard to humans and can damage machines. Studying Martian dust and its interactions with its surroundings will also help scientists model Mars's climate and geology.

In building the Microscopic, Electrochemistry and Conductivity Analyser (MECA), Staufer and his team had to take into account parameters they don't usually have to deal with in normal operation in the lab. The device has to work at temperatures ranging from -60°C to +2°C. It has to operate at atmospheric carbon dioxide pressures of one to 10 mbar. It has to be radiation tolerant, use less than 10 watts of electricity, and cope with shock and vibration during the start, flight, and landing, and it had to have a mass of under 250g because each gram costs $50,000 to get to Mars.

Finally, on Mars, at least for this mission, there will be no on-site operator. Changes to the robot arm's programming will have to be made from Tucson in the narrow window of time each day during which communication is possible.

The key piece of machinery is a two metre robot arm, which will dig through the top soil layer and scoop up samples of buried soil and water-ice to the lander platform for scientific analysis. Riding inside the robot arm, MECA will examine soil samples to determine chemical properties (acidity, saltiness, and composition) and examine the soil grains through a microscope to determine their mineralogy and origin. Needles sunk into the sample will determine its water and ice content.

The atomic force microscope that forms the heart of MECA is the piece supplied by Staufer and his team. It is made up of three parts: a microfabricated silicon sensor chip, an electromagnetic scanner, and the controller electronics. As much of the necessary functionality as possible has been built into the chip.

The microscope itself, which will work down to the 20 nanometer scale the mission needs, collects the data from which it forms images from a sharp tip mounted on a tiny cantilever whose deflection in response to stress provides additional feedback. Since there will be no operator available to change tips, the chip has eight cantilevers mounted on it. If the tip in use becomes broken or damaged, the chip is pushed against a support beam that will break off that cantilever, moving the next one into use. Staufer describes the process as "like using a match box".

Soil samples collected by the robot arm will be poured onto a sample wheel and rotated in front of the microscope. If an interesting area is found, scientists will be able to direct it to zoom in and send images. Once the images arrive in Tucson, Staufer and his team will have about four hours to look at them, decide what else they want to look at, compile commands, and send them up to Mars for the next moves. Staufer and his team will spend three months in Tucson living on Mars time – the Red Planet's days are 40 minutes longer than ours.

The device had to pass a number of qualification tests – for example, vibration, and shock. However, it avoided the more stringent qualification tests it would have had to pass if it were going to come into direct contact with the Mars surface. ("We don't want to contaminate the ground on Mars," Staufer explains. ) Besides, keeping the instrument inside the robot arm provides better protection for the delicate cantilevers (although, Staufer notes, they tested it and proved the instrument can survive the autoclave).

The idea that there might be life on Mars has waned and waxed in popularity since the 16th century, when astronomer Tycho Brahe first observed the planet. In the 17th century, Dutch astronomer and watchmaker Christian Huygens spotted the polar caps. In the 19th century, French astronomer Honoré Flaugergues observed the polar caps more closely and concluded there must be seasons.

Later that century, Italian astronomer Giovanni Schiaparelli named the seas and continents and identified "canali", the Italian word for channels. Widely misreported as canals, these structures were eventually shown to be artefacts of the lenses Schiaparelli had available. Just before the turn of the 20th century, H G Wells wrote War of the Worlds, which had the intelligent aliens living on Mars invade Earth because they had run out of water. At that time, the existence of life on Mars was debated by serious scientists.

But by 1975 the images from Mariner 4 and Viking 1 and 2 had changed our view of the planet: no life was detected and, given the high levels of ultraviolet radiation and highly active oxidants, scientists concluded that life was impossible in the layers close to the surface. The idea of life on Mars became part of fringe science.

Then, in 2002, the Mars Odyssey Orbiter discovered large amounts of subsurface water-ice in the northern arctic plains. The Phoenix Mars Mission uses components of two more recent, unsuccessful Mars missions to study this region – hence the name "Phoenix", as the mission has literally risen from the ashes of its predecessors. ®

*There is a three week launch window which opens on Friday, 3 August.


Other stories you might like

  • Lonestar plans to put datacenters in the Moon's lava tubes
    How? Founder tells The Register 'Robots… lots of robots'

    Imagine a future where racks of computer servers hum quietly in darkness below the surface of the Moon.

    Here is where some of the most important data is stored, to be left untouched for as long as can be. The idea sounds like something from science-fiction, but one startup that recently emerged from stealth is trying to turn it into a reality. Lonestar Data Holdings has a unique mission unlike any other cloud provider: to build datacenters on the Moon backing up the world's data.

    "It's inconceivable to me that we are keeping our most precious assets, our knowledge and our data, on Earth, where we're setting off bombs and burning things," Christopher Stott, founder and CEO of Lonestar, told The Register. "We need to put our assets in place off our planet, where we can keep it safe."

    Continue reading
  • Conti: Russian-backed rulers of Costa Rican hacktocracy?
    Also, Chinese IT admin jailed for deleting database, and the NSA promises no more backdoors

    In brief The notorious Russian-aligned Conti ransomware gang has upped the ante in its attack against Costa Rica, threatening to overthrow the government if it doesn't pay a $20 million ransom. 

    Costa Rican president Rodrigo Chaves said that the country is effectively at war with the gang, who in April infiltrated the government's computer systems, gaining a foothold in 27 agencies at various government levels. The US State Department has offered a $15 million reward leading to the capture of Conti's leaders, who it said have made more than $150 million from 1,000+ victims.

    Conti claimed this week that it has insiders in the Costa Rican government, the AP reported, warning that "We are determined to overthrow the government by means of a cyber attack, we have already shown you all the strength and power, you have introduced an emergency." 

    Continue reading
  • China-linked Twisted Panda caught spying on Russian defense R&D
    Because Beijing isn't above covert ops to accomplish its five-year goals

    Chinese cyberspies targeted two Russian defense institutes and possibly another research facility in Belarus, according to Check Point Research.

    The new campaign, dubbed Twisted Panda, is part of a larger, state-sponsored espionage operation that has been ongoing for several months, if not nearly a year, according to the security shop.

    In a technical analysis, the researchers detail the various malicious stages and payloads of the campaign that used sanctions-related phishing emails to attack Russian entities, which are part of the state-owned defense conglomerate Rostec Corporation.

    Continue reading
  • FTC signals crackdown on ed-tech harvesting kid's data
    Trade watchdog, and President, reminds that COPPA can ban ya

    The US Federal Trade Commission on Thursday said it intends to take action against educational technology companies that unlawfully collect data from children using online educational services.

    In a policy statement, the agency said, "Children should not have to needlessly hand over their data and forfeit their privacy in order to do their schoolwork or participate in remote learning, especially given the wide and increasing adoption of ed tech tools."

    The agency says it will scrutinize educational service providers to ensure that they are meeting their legal obligations under COPPA, the Children's Online Privacy Protection Act.

    Continue reading
  • Mysterious firm seeks to buy majority stake in Arm China
    Chinese joint venture's ousted CEO tries to hang on - who will get control?

    The saga surrounding Arm's joint venture in China just took another intriguing turn: a mysterious firm named Lotcap Group claims it has signed a letter of intent to buy a 51 percent stake in Arm China from existing investors in the country.

    In a Chinese-language press release posted Wednesday, Lotcap said it has formed a subsidiary, Lotcap Fund, to buy a majority stake in the joint venture. However, reporting by one newspaper suggested that the investment firm still needs the approval of one significant investor to gain 51 percent control of Arm China.

    The development comes a couple of weeks after Arm China said that its former CEO, Allen Wu, was refusing once again to step down from his position, despite the company's board voting in late April to replace Wu with two co-chief executives. SoftBank Group, which owns 49 percent of the Chinese venture, has been trying to unentangle Arm China from Wu as the Japanese tech investment giant plans for an initial public offering of the British parent company.

    Continue reading
  • SmartNICs power the cloud, are enterprise datacenters next?
    High pricing, lack of software make smartNICs a tough sell, despite offload potential

    SmartNICs have the potential to accelerate enterprise workloads, but don't expect to see them bring hyperscale-class efficiency to most datacenters anytime soon, ZK Research's Zeus Kerravala told The Register.

    SmartNICs are widely deployed in cloud and hyperscale datacenters as a means to offload input/output (I/O) intensive network, security, and storage operations from the CPU, freeing it up to run revenue generating tenant workloads. Some more advanced chips even offload the hypervisor to further separate the infrastructure management layer from the rest of the server.

    Despite relative success in the cloud and a flurry of innovation from the still-limited vendor SmartNIC ecosystem, including Mellanox (Nvidia), Intel, Marvell, and Xilinx (AMD), Kerravala argues that the use cases for enterprise datacenters are unlikely to resemble those of the major hyperscalers, at least in the near term.

    Continue reading

Biting the hand that feeds IT © 1998–2022