US military tracker-droids to 'consider humans as fluid'

Traffic algorithm upgrade for airborne spyeyes


Pentagon propellerhead chiefs have hatched another sinister surveillance scheme. The plan is to add "flow based" theories of urban traffic movement - which assume that humans en masse behave like fluid moving through a network of pipes or channels - to conventional radar/camera based tracking of vehicles.

One need hardly say that the body behind the Flow-based Information Theory Tracking (FITT) scheme is none other than DARPA, the Defense Advanced Research Projects Agency. When you're a hammer, all the problems start to look like nails; when you're DARPA, all the problems start to look like insignificant fleshies scurrying like cockroaches among their inefficient human warrens as your automated aerial robo-surveillance network peers down god-like from above.

The DARPA boffinry chiefs explain their aspirations to enhance their aerial spy networks thus:

The FITT program assumes that a sensor (e.g., radar or a set of cameras) observes a ground area...

As ground target densities increase in more urban areas, existing trackers often lose target track due to nearby confusers, and operate with limited hypothesis depths to avoid computational overload. In addition, urban traffic offers many constraints that conventional trackers do not exploit. For example, ground vehicles cannot pass thru each other, they cannot go beyond the bounds of typical urban roads, and they generally obey cultural conventions and traffic laws. Under these constraints, ground traffic behaves somewhat like a fluid, and the FITT Program expects to develop new tracking algorithms based on this fluidic viewpoint.

Thus, even if all the radar blips representing moving cars etc. start to run together, or if a car could no longer be seen visually due to an intervening building, lorry etc., a FITT-enhanced tracker system would still cope. It would be able to follow the position of a target vehicle at least for a while by monitoring the traffic flowing along.

Likewise, a FITT algorithm might be able to infer behaviour. If it was watching a vehicle approaching a T junction, but couldn't observe the junction itself, it might note the vehicle slowing down and work out that it planned to turn at the junction rather than carrying straight on. Etc etc.

The initial DARPA workshop for people who'd like to design such kit takes place in a couple of weeks, and will among other delights feature a probably very interesting "Tracking State-of-the-Art" presentation. Full details from DARPA here in pdf. Strangely, it doesn't seem to be classified top secret, as you might expect. ®


Other stories you might like

  • D-Wave deploys first US-based Advantage quantum system
    For those that want to keep their data in the homeland

    Quantum computing outfit D-Wave Systems has announced availability of an Advantage quantum computer accessible via the cloud but physically located in the US, a key move for selling quantum services to American customers.

    D-Wave reported that the newly deployed system is the first of its Advantage line of quantum computers available via its Leap quantum cloud service that is physically located in the US, rather than operating out of D-Wave’s facilities in British Columbia.

    The new system is based at the University of Southern California, as part of the USC-Lockheed Martin Quantum Computing Center hosted at USC’s Information Sciences Institute, a factor that may encourage US organizations interested in evaluating quantum computing that are likely to want the assurance of accessing facilities based in the same country.

    Continue reading
  • Bosses using AI to hire candidates risk discriminating against disabled applicants
    US publishes technical guide to help organizations avoid violating Americans with Disabilities Act

    The Biden administration and Department of Justice have warned employers using AI software for recruitment purposes to take extra steps to support disabled job applicants or they risk violating the Americans with Disabilities Act (ADA).

    Under the ADA, employers must provide adequate accommodations to all qualified disabled job seekers so they can fairly take part in the application process. But the increasing rollout of machine learning algorithms by companies in their hiring processes opens new possibilities that can disadvantage candidates with disabilities. 

    The Equal Employment Opportunity Commission (EEOC) and the DoJ published a new document this week, providing technical guidance to ensure companies don't violate ADA when using AI technology for recruitment purposes.

    Continue reading
  • How ICE became a $2.8b domestic surveillance agency
    Your US tax dollars at work

    The US Immigration and Customs Enforcement (ICE) agency has spent about $2.8 billion over the past 14 years on a massive surveillance "dragnet" that uses big data and facial-recognition technology to secretly spy on most Americans, according to a report from Georgetown Law's Center on Privacy and Technology.

    The research took two years and included "hundreds" of Freedom of Information Act requests, along with reviews of ICE's contracting and procurement records. It details how ICE surveillance spending jumped from about $71 million annually in 2008 to about $388 million per year as of 2021. The network it has purchased with this $2.8 billion means that "ICE now operates as a domestic surveillance agency" and its methods cross "legal and ethical lines," the report concludes.

    ICE did not respond to The Register's request for comment.

    Continue reading
  • Fully automated AI networks less than 5 years away, reckons Juniper CEO
    You robot kids, get off my LAN

    AI will completely automate the network within five years, Juniper CEO Rami Rahim boasted during the company’s Global Summit this week.

    “I truly believe that just as there is this need today for a self-driving automobile, the future is around a self-driving network where humans literally have to do nothing,” he said. “It's probably weird for people to hear the CEO of a networking company say that… but that's exactly what we should be wishing for.”

    Rahim believes AI-driven automation is the latest phase in computer networking’s evolution, which began with the rise of TCP/IP and the internet, was accelerated by faster and more efficient silicon, and then made manageable by advances in software.

    Continue reading
  • Pictured: Sagittarius A*, the supermassive black hole at the center of the Milky Way
    We speak to scientists involved in historic first snap – and no, this isn't the M87*

    Astronomers have captured a clear image of the gigantic supermassive black hole at the center of our galaxy for the first time.

    Sagittarius A*, or Sgr A* for short, is 27,000 light-years from Earth. Scientists knew for a while there was a mysterious object in the constellation of Sagittarius emitting strong radio waves, though it wasn't really discovered until the 1970s. Although astronomers managed to characterize some of the object's properties, experts weren't quite sure what exactly they were looking at.

    Years later, in 2020, the Nobel Prize in physics was awarded to a pair of scientists, who mathematically proved the object must be a supermassive black hole. Now, their work has been experimentally verified in the form of the first-ever snap of Sgr A*, captured by more than 300 researchers working across 80 institutions in the Event Horizon Telescope Collaboration. 

    Continue reading

Biting the hand that feeds IT © 1998–2022