Scientists crack spotless Sun mystery

Temperamental conveyor belt to blame for deep solar minimum


NASA explains: "A vast system of plasma currents called ‘meridional flows’ (akin to ocean currents on Earth) travel along the sun's surface, plunge inward around the poles, and pop up again near the sun's equator. These looping currents play a key role in the 11-year solar cycle.

"When sunspots begin to decay, surface currents sweep up their magnetic remains and pull them down inside the star; 300,000 km below the surface, the sun’s magnetic dynamo amplifies the decaying magnetic fields. Re-animated sunspots become buoyant and bob up to the surface like a cork in water—voila! A new solar cycle is born."

Team member Andrés Muñoz-Jaramillo, of the Harvard-Smithsonian Center for Astrophysics, said: "According to our model, the trouble with sunspots actually began in back in the late 1990s during the upswing of Solar Cycle 23. At that time, the conveyor belt sped up."

The belt "rapidly dragged sunspot corpses down to sun's inner dynamo for amplification", but although this might suggest a boost in sunspot production, the remains "rode the belt through the amplification zone too hastily for full re-animation".

NASA continues: "Later, in the 2000s, according to the model, the Conveyor Belt slowed down again, allowing magnetic fields to spend more time in the amplification zone, but the damage was already done. New sunspots were in short supply. Adding insult to injury, the slow moving belt did little to assist re-animated sunspots on their journey back to the surface, delaying the onset of Solar Cycle 24."

The scientists, whose results are published in today's issue of Nature (subscription required), reckon helioseismology data from the Solar Dynamics Observatory (SDO) could in future be plugged into their model "to predict how future solar minima will unfold".

Lika Guhathakurta of NASA’s Heliophysics Division in Washington concluded that "finally, we may be cracking the mystery of the spotless sun."

NASA has more here. ®

Bootnote

Here's a nice vid from the SDO, captured last week:

NASA explains: "When a rather large M 3.6 class flare occurred near the edge of the Sun on Feb. 24, 2011, it blew out a gorgeous, waving mass of erupting plasma that swirled and twisted for 90 minutes. NASA’s Solar Dynamics Observatory captured the event in extreme ultraviolet light. Because SDO images are high definition, the team was able to zoom in on the flare and still see exquisite details. And using a cadence of a frame taken every 24 seconds, the sense of motion is, by all appearances, seamless."


Other stories you might like

  • Robotics and 5G to spur growth of SoC industry – report
    Big OEMs hogging production and COVID causing supply issues

    The system-on-chip (SoC) side of the semiconductor industry is poised for growth between now and 2026, when it's predicted to be worth $6.85 billion, according to an analyst's report. 

    Chances are good that there's an SoC-powered device within arm's reach of you: the tiny integrated circuits contain everything needed for a basic computer, leading to their proliferation in mobile, IoT and smart devices. 

    The report predicting the growth comes from advisory biz Technavio, which looked at a long list of companies in the SoC market. Vendors it analyzed include Apple, Broadcom, Intel, Nvidia, TSMC, Toshiba, and more. The company predicts that much of the growth between now and 2026 will stem primarily from robotics and 5G. 

    Continue reading
  • Deepfake attacks can easily trick live facial recognition systems online
    Plus: Next PyTorch release will support Apple GPUs so devs can train neural networks on their own laptops

    In brief Miscreants can easily steal someone else's identity by tricking live facial recognition software using deepfakes, according to a new report.

    Sensity AI, a startup focused on tackling identity fraud, carried out a series of pretend attacks. Engineers scanned the image of someone from an ID card, and mapped their likeness onto another person's face. Sensity then tested whether they could breach live facial recognition systems by tricking them into believing the pretend attacker is a real user.

    So-called "liveness tests" try to authenticate identities in real-time, relying on images or video streams from cameras like face recognition used to unlock mobile phones, for example. Nine out of ten vendors failed Sensity's live deepfake attacks.

    Continue reading
  • Lonestar plans to put datacenters in the Moon's lava tubes
    How? Founder tells The Register 'Robots… lots of robots'

    Imagine a future where racks of computer servers hum quietly in darkness below the surface of the Moon.

    Here is where some of the most important data is stored, to be left untouched for as long as can be. The idea sounds like something from science-fiction, but one startup that recently emerged from stealth is trying to turn it into a reality. Lonestar Data Holdings has a unique mission unlike any other cloud provider: to build datacenters on the Moon backing up the world's data.

    "It's inconceivable to me that we are keeping our most precious assets, our knowledge and our data, on Earth, where we're setting off bombs and burning things," Christopher Stott, founder and CEO of Lonestar, told The Register. "We need to put our assets in place off our planet, where we can keep it safe."

    Continue reading

Biting the hand that feeds IT © 1998–2022