ET, phone back: Alien quest seeks earthling coders

Open source joins Search for Extra Terrestrial Intelligence


It was the year of Star Wars and Close Encounters, and in the flatlands of Ohio, a man stumbled upon something possibly alien in origin.

On August 17, 1977, Ohio State University astronomer Jerry Ehman was sitting at his kitchen table, pouring over pages of printouts from the SETI Project's Big Ear radio telescope's computers. On these pages were line after line of numbers and letters. A cluster of six characters jumped out at Ehman and he circled them in red ink. Next to that circle he wrote: "Wow!".

Wow! signal printout, photo: The Ohio State University Radio Observatory and the North American AstroPhysical Observatory

Big Wow!: the printout of the signal from somewhere near Sagittarius

SETI stands for the Search for Extra Terrestrial Intelligence, and in the 34 years since Ehman's discovery astronomers have been agonizing over the precise meaning of what has become known as the "Wow! signal". It's non-terrestrial in origin, meaning it's not man-made and didn't originate from Earth. Wow! was traced back to a cluster of 100,000 densely packed stars in the Sagittarius constellation.

But was this just a noisy star, or a signal sent from a distance race? And if this was first contact, why did the sender transmit just once? The mystery is made worse by the "what if" factor: what if Ehman had received the data sooner, or if modern computers were available to crunch the data?

The data was three days old by the time Ehman spotted Wow!, meaning that if it were a message, the sender could have moved on for lack of a reply.

Such a delay wasn't unusual: it was standard practice to distribute Big Ear printouts once a week. Meanwhile, the kinds of computers Ehman might rely on today were still in the future: Steve Wozniak had only just built the Apple I and II. The most computing power SETI had at the time was an already 12-year-old IBM 1130 – powerful for its time but with limited memory and no GUI input.

SETI Institute's research director Jill Tarter, in a conversation with The Reg at SETICon in Santa Clara, California, last year, lamented the missed opportunity and the lack of computing power. "Back in 1977, the computers were just dumping numbers to paper readout that somebody collected every week," she told us.

And this isn't the only time that computers have let us down. Not so long ago, in 2003, people got in a plasma storm over whether a signal branded SHGb02+14, identified by the SETI@home project, was a promising candidate sent from the depths of space. SETI@home is the effort sponsored by the University of California at Berkeley that runs in the spare cycles of a distributed network of three million volunteers' PCs, crunching radio-telescope data.

"We had two signals that are unexplained because of the way they were gathered, and it was not possible to follow up on them," Tarter says of Wow! and SHGb02+14.

Thirty-four years after Wow! the SETI Institute is getting serious. SETI has now finished a major overhaul of the hardware and software behind a massive expansion in research, taking the hunt for extra terrestrial intelligence through to 2020.

SETI has installed its first-ever, off-the-self, Intel-based servers – from Dell – in the belief that commodity machines are finally powerful enough to processes in real time the huge quantities of data it receives from space. The data itself is being sucked down by a brand-new radio telescope array being built in northern California that was funded initially by Microsoft cofounder Paul Allen and called the Allen Telescope Array (ATA).

Building faster PCs

In a major shift of research culture, SETI is also opening up to outsiders, making the ATA's data available to the public, and posting data on the cloud – Amazon's cloud, to be precise. It began releasing ATA data to setiquest.org in February 2010.

Last month, SETI finished the job of open sourcing the code of its closed search program that runs on the Dell servers and that processes ATA's data. The next step is to invite coders outside of SETI to start building new search algorithms that could help its scientists find the next Wow!.

"We couldn't have done this five years ago or a year ago," Tarter tells us. "We are finally at the point where commodity servers are fast enough where we can throw away the custom signal processing gear we built." Yes, you read that right: SETI had custom-built its own systems in order to process radio-telescope signals from space, believing it could do a far better job than the brains in Palo Alto or Round Rock.

"Now, for the very first time, we can get the heck out of the cathedral," she tells us. "In the past [people outside SETI] couldn't help us because you needed to know the intricacies of the special-purpose hardware in order to develop code or do any work with us." Now you can.

Broader topics


Other stories you might like

  • Robotics and 5G to spur growth of SoC industry – report
    Big OEMs hogging production and COVID causing supply issues

    The system-on-chip (SoC) side of the semiconductor industry is poised for growth between now and 2026, when it's predicted to be worth $6.85 billion, according to an analyst's report. 

    Chances are good that there's an SoC-powered device within arm's reach of you: the tiny integrated circuits contain everything needed for a basic computer, leading to their proliferation in mobile, IoT and smart devices. 

    The report predicting the growth comes from advisory biz Technavio, which looked at a long list of companies in the SoC market. Vendors it analyzed include Apple, Broadcom, Intel, Nvidia, TSMC, Toshiba, and more. The company predicts that much of the growth between now and 2026 will stem primarily from robotics and 5G. 

    Continue reading
  • Deepfake attacks can easily trick live facial recognition systems online
    Plus: Next PyTorch release will support Apple GPUs so devs can train neural networks on their own laptops

    In brief Miscreants can easily steal someone else's identity by tricking live facial recognition software using deepfakes, according to a new report.

    Sensity AI, a startup focused on tackling identity fraud, carried out a series of pretend attacks. Engineers scanned the image of someone from an ID card, and mapped their likeness onto another person's face. Sensity then tested whether they could breach live facial recognition systems by tricking them into believing the pretend attacker is a real user.

    So-called "liveness tests" try to authenticate identities in real-time, relying on images or video streams from cameras like face recognition used to unlock mobile phones, for example. Nine out of ten vendors failed Sensity's live deepfake attacks.

    Continue reading
  • Lonestar plans to put datacenters in the Moon's lava tubes
    How? Founder tells The Register 'Robots… lots of robots'

    Imagine a future where racks of computer servers hum quietly in darkness below the surface of the Moon.

    Here is where some of the most important data is stored, to be left untouched for as long as can be. The idea sounds like something from science-fiction, but one startup that recently emerged from stealth is trying to turn it into a reality. Lonestar Data Holdings has a unique mission unlike any other cloud provider: to build datacenters on the Moon backing up the world's data.

    "It's inconceivable to me that we are keeping our most precious assets, our knowledge and our data, on Earth, where we're setting off bombs and burning things," Christopher Stott, founder and CEO of Lonestar, told The Register. "We need to put our assets in place off our planet, where we can keep it safe."

    Continue reading

Biting the hand that feeds IT © 1998–2022