Using virtual particles to get real random numbers

Bouncing photons off ‘empty space’


number generator, by bouncing photons off empty space.

As regular readers know, empty space isn’t actually empty – it’s home to “quantum fluctuations”, one of the stranger manifestations of quantum theory, in which particles and anti-particles spontaneously come into existence and annihilate so as to preserve the uncertainty principle. And if that’s not strange enough for you, why not learn how to turn virtual photons into real ones?

The new trick, demonstrated by a group led by Benjamin Sussman of Canada’s National Research Council in collaboration with researchers at the NRC and Oxford University, exploits vacuum fluctuations to create random numbers.

A big problem with “random” numbers generated by computers is that while “true” randomness is really useful for cryptography, it’s also very hard to achieve. Even very good computer algorithms are deterministic in some way. Quantum systems, on the other hand, are non-deterministic – or, to be more accurate, individual measurements might not be. As the researchers’ paper states:

“While the evolution of a quantum function is deterministic, the outcome of a particular measurement on a state is not”. If the right observable characteristic of a quantum system is chosen, the paper argues, a “non-deterministic” – and therefore truly random – number can be achieved.

This is already known and used in quantum random number generators, with the paper citing techniques such as vacuum shot noise (measuring the quantum noise in a signal), radioactive decay, laser noise, photon statistics, or fluorescence from entangled ions. However, many of these are too slow to keep up with the requirements of data networks.

Sussman’s technique is essentially to bounce light pulses off the “virtual particles” of quantum fluctuations, which randomizes the signature of the received light, and, because of the characteristics of the system he’s using, happens very quickly (Sussman claims Gbps key generation is possible, although his experiment is limited by the instruments available to 1 kHz).

Here’s how it works: a light pulse (“pump” pulse) is shone into a 3mm diamond plate, which generates a Stokes field with random phase. The original pulse is filtered out, leaving only the Stokes field, which is then combined with a reference pulse.

It’s what happens inside the diamond, however, that’s interesting: the interaction of the pump beam with the vacuum fluctuations changes the phase of the incoming photons in picoseconds, the paper claims, and since phase can be very precisely measured, Sussman says it’s possible to generate multiple bits per measurement. ®

Similar topics


Other stories you might like

  • DigitalOcean tries to take sting out of price hike with $4 VM
    Cloud biz says it is reacting to customer mix largely shifting from lone devs to SMEs

    DigitalOcean attempted to lessen the sting of higher prices this week by announcing a cut-rate instance aimed at developers and hobbyists.

    The $4-a-month droplet — what the infrastructure-as-a-service outfit calls its virtual machines — pairs a single virtual CPU with 512 MB of memory, 10 GB of SSD storage, and 500 GB a month in network bandwidth.

    The launch comes as DigitalOcean plans a sweeping price hike across much of its product portfolio, effective July 1. On the low-end, most instances will see pricing increase between $1 and $16 a month, but on the high-end, some products will see increases of as much as $120 in the case of DigitalOceans’ top-tier storage-optimized virtual machines.

    Continue reading
  • GPL legal battle: Vizio told by judge it will have to answer breach-of-contract claims
    Fine-print crucially deemed contractual agreement as well as copyright license in smartTV source-code case

    The Software Freedom Conservancy (SFC) has won a significant legal victory in its ongoing effort to force Vizio to publish the source code of its SmartCast TV software, which is said to contain GPLv2 and LGPLv2.1 copyleft-licensed components.

    SFC sued Vizio, claiming it was in breach of contract by failing to obey the terms of the GPLv2 and LGPLv2.1 licenses that require source code to be made public when certain conditions are met, and sought declaratory relief on behalf of Vizio TV owners. SFC wanted its breach-of-contract arguments to be heard by the Orange County Superior Court in California, though Vizio kicked the matter up to the district court level in central California where it hoped to avoid the contract issue and defend its corner using just federal copyright law.

    On Friday, Federal District Judge Josephine Staton sided with SFC and granted its motion to send its lawsuit back to superior court. To do so, Judge Staton had to decide whether or not the federal Copyright Act preempted the SFC's breach-of-contract allegations; in the end, she decided it didn't.

    Continue reading
  • US brings first-of-its-kind criminal charges of Bitcoin-based sanctions-busting
    Citizen allegedly moved $10m-plus in BTC into banned nation

    US prosecutors have accused an American citizen of illegally funneling more than $10 million in Bitcoin into an economically sanctioned country.

    It's said the resulting criminal charges of sanctions busting through the use of cryptocurrency are the first of their kind to be brought in the US.

    Under the United States' International Emergency Economic Powers Act (IEEA), it is illegal for a citizen or institution within the US to transfer funds, directly or indirectly, to a sanctioned country, such as Iran, Cuba, North Korea, or Russia. If there is evidence the IEEA was willfully violated, a criminal case should follow. If an individual or financial exchange was unwittingly involved in evading sanctions, they may be subject to civil action. 

    Continue reading

Biting the hand that feeds IT © 1998–2022