Graphics shocker: Nvidia virtualizes Kepler GPUs

VGX revs virty desktops, fluffs gamy clouds, changes everything


GTC 2012 You game-console makers who still want to be in the hardware business, look out. You console makers who don't want to be in the hardware business (this might mean you, Microsoft), you can all breathe a sigh of relief: after a five-year effort,­ Nvidia is adding graphics virtualization to its latest "Kepler" line of GPUs.

The Kepler GPUs, previewed in the GeForce line back in March, are the stars of the GPU Technical Conference that Nvidia is hosting this week in San José, California – but some of the most interesting news about them was kept under wraps until Tuesday's keynote by Nvidia cofounder and CEO Jen-Hsun Huang.

The feeds and speeds of the GeForce discrete graphics cards for desktops and laptops and the Tesla K10 coprocessors are now out there, but for his GTC keynote Huang revealed VGX, a set of extensions to the GPU architecture that allow for a GPU to be virtualized so it can be shared by multiple client devices over a private network, or render images remotely and stream them down from VDI or gaming clouds.

Huang said that more than five years ago, Nvidia's engineering team "just started dreaming" about cool things they might do, and decided then and there that they wanted to take GPUs into the cloud, both for remote graphics and remote computation.

The computation part is relatively easy, but the funny thing about graphics cards rendering images is that they just don't like to share. And, more importantly, they're chock full of state that needs to be managed by whatever virtualization layer (called a hypervisor for GPUs just as it is for CPUs) that manages the carved-up bits of the GPU.

During the Q&A session following his keynote introduction of VGX feature, Huang explained that because graphics chips have so much pipelining and so many registers, as well as so many cores and threads, are "inherently unfriendly" to being diced and sliced and virtualized.

A CPU, by comparison, might have tens of threads and a bunch of registers with kilobytes of data that a hypervisor has to juggle, but a GPU – such as the Kepler chip – has many thousands of threads and many megabytes of state data from all of those threads that have to be managed.

Simply put, GPU virtualization is many orders of magnitude more complex than CPU virtualization.

Schematic diagram of Nvidia's VGX GPU virtualization

Schematic diagram of Nvidia's VGX GPU virtualization (photo: Dan Olds – click to enlarge).

Nonetheless, Nvidia has figured out how to build a VGX GPU hypervisor that integrates with XenServer from Citrix Systems and allows for a Kepler GPU to be carved up into as many as 256 virtual GPUs. These virtual GPUs can be tied to a specific virtual machine running on a hypervisor on a server and managed just like a real GPU, with the ability to allocate more CUDA cores to a virtual PC or server image for its graphics needs.

VGX is not just about cutting up a big GPU so it can be used by multiple virtual PC images in a virtual desktop infrastructure (VDI) setup. VGX also allows for the Kepler GPU sliced up into virtual GPUs that can see which VM is asking for what stream, and render its frame buffer directly to that VM instead of going through the CPU.

Huang explained that current VDI implementations such as those based on the Receiver client from Citrix Systems have a "software GPU" that gets in the way. His approach puts a hypervisor with multiple virtual GPUs on the backend server, in this case running XenServer, and you can get the software-based GPU out of the loop.

Block diagram of Nvidia' Kepler VGX GPU virtualization

Block diagram of Nvidia' Kepler VGX GPU virtualization (photo: Dan Olds – click to enlarge)

Huang says that the Kepler GPU could support as many as 256 virtual GPUs, and he conceded that people might want to take this virtualized CPU-GPU stack and install it on their home PCs or office PCs so they could be accessed from any outside device such as another PC, a smartphone, or a tablet, and still offer the same experience and functionality as the home device.

In effect, your PC can become your personal cloud, rendering your applications remotely.

To get the VGX ball rolling, Nvidia has cooked up something called a VGX board, which has four Kepler GPUs with 192 cores each – that's a mostly dud chip, considering that a standard Kepler GPU has 1,536 cores – and 16GB of memory that is carved up into four segments and used as a frame buffer for each Kepler GPU.

This card, which is passively cooled and designed to slide into servers like the Tesla GPU coprocessors, is able to provide virtual GPUs for about 100 virty PCs, or 25 per GPU on the card. There's no word yet on when these VGX cards are going to be available or what they'll cost, but presumably they will be less expensive than a full-on Kepler GeForce or Tesla card.

Nvidia is partnering with the key server makers, plus Microsoft, VMware, and Citrix for hypervisors and for end-user virty client software to support the VGX hardware and hypervisor.

Citrix, which is arguably today's VDI leader, seems to have the VGX pole position. But the point of VGX is not to be tied to any particular hypervisor or client device, Huang explained. You don't need anything but a bit of software like Receiver (which is free) or the VMware or Microsoft analogues for VDI, and for cloudy gaming all you need is a decoder that is compliant with the H.264/MPEG-4 standard on your client device.

Next page: Heavenly gaming

Similar topics


Other stories you might like

  • Prisons transcribe private phone calls with inmates using speech-to-text AI

    Plus: A drug designed by machine learning algorithms to treat liver disease reaches human clinical trials and more

    In brief Prisons around the US are installing AI speech-to-text models to automatically transcribe conversations with inmates during their phone calls.

    A series of contracts and emails from eight different states revealed how Verus, an AI application developed by LEO Technologies and based on a speech-to-text system offered by Amazon, was used to eavesdrop on prisoners’ phone calls.

    In a sales pitch, LEO’s CEO James Sexton told officials working for a jail in Cook County, Illinois, that one of its customers in Calhoun County, Alabama, uses the software to protect prisons from getting sued, according to an investigation by the Thomson Reuters Foundation.

    Continue reading
  • Battlefield 2042: Please don't be the death knell of the franchise, please don't be the death knell of the franchise

    Another terrible launch, but DICE is already working on improvements

    The RPG Greetings, traveller, and welcome back to The Register Plays Games, our monthly gaming column. Since the last edition on New World, we hit level cap and the "endgame". Around this time, item duping exploits became rife and every attempt Amazon Games made to fix it just broke something else. The post-level 60 "watermark" system for gear drops is also infuriating and tedious, but not something we were able to address in the column. So bear these things in mind if you were ever tempted. On that note, it's time to look at another newly released shit show – Battlefield 2042.

    I wanted to love Battlefield 2042, I really did. After the bum note of the first-person shooter (FPS) franchise's return to Second World War theatres with Battlefield V (2018), I stupidly assumed the next entry from EA-owned Swedish developer DICE would be a return to form. I was wrong.

    The multiplayer military FPS market is dominated by two forces: Activision's Call of Duty (COD) series and EA's Battlefield. Fans of each franchise are loyal to the point of zealotry with little crossover between player bases. Here's where I stand: COD jumped the shark with Modern Warfare 2 in 2009. It's flip-flopped from WW2 to present-day combat and back again, tried sci-fi, and even the Battle Royale trend with the free-to-play Call of Duty: Warzone (2020), which has been thoroughly ruined by hackers and developer inaction.

    Continue reading
  • American diplomats' iPhones reportedly compromised by NSO Group intrusion software

    Reuters claims nine State Department employees outside the US had their devices hacked

    The Apple iPhones of at least nine US State Department officials were compromised by an unidentified entity using NSO Group's Pegasus spyware, according to a report published Friday by Reuters.

    NSO Group in an email to The Register said it has blocked an unnamed customers' access to its system upon receiving an inquiry about the incident but has yet to confirm whether its software was involved.

    "Once the inquiry was received, and before any investigation under our compliance policy, we have decided to immediately terminate relevant customers’ access to the system, due to the severity of the allegations," an NSO spokesperson told The Register in an email. "To this point, we haven’t received any information nor the phone numbers, nor any indication that NSO’s tools were used in this case."

    Continue reading

Biting the hand that feeds IT © 1998–2021