Resistance is futile? Memristor RAM now cheap as chips

UCL breakthrough after team toyed with LEDs


Cheaper memristors could result from an accidental discovery at University College London.

The HP-popularised memristor device is a form of ReRAM – resistive RAM – and is fairly expensive to make. Metal oxide-based ReRAM technology promises to combine minimum memory speed with NAND non-volatility and be able to provide higher capacities than NAND, which is thought will cease to be usable as process geometries go down past 10nm. ReRAM dies will need less electricity to run and will take up less space than equivalent capacity NAND.

A team from UCL experimented with silicon oxide to make LEDs, and accidentally caused the arrangement of the silicon atoms to change and form less resistive filaments within the solid silicon oxide. The switch in resistance is made much more efficiently than before, and the process has been described in a Journal of Applied Physics paper.

The brainiacs were trying to make LEDs, but found that their devices appeared to be unstable. A UCL PhD student in the department, Adnan Mehonic, was asked to look into this and found that the silicon oxide wasn’t unstable at all, and in fact was flipping predictably between various conducting and non-conducting states.

He said: "My work revealed that a material we had been looking at for some time could in fact be made into a memristor. The potential for this material is huge. During proof-of-concept development we have shown we can program the chips using the cycle between two or more states of conductivity. We’re very excited that our devices may be an important step towards new silicon memory chips.”

UCL ReRAM device

UCL ReRAM device. Courtesy UCL/Adnan Mehonic

A UCL release says: "The UCL devices can also be designed to have a continuously variable resistance that depends on the last voltage that was applied... Devices that operate in this way are sometimes known as ‘memristors’."

A silicon oxide-based memristor could be incorporated into silicon chips using variations on existing semi-condictor processes.

Dr Tony Kenyon, a reader in photonic materials in UCL's Electronic and Electrical Engineering department, said: “Our ReRAM memory chips need just a thousandth of the energy and are around a hundred times faster than standard flash memory chips. The fact that the device can operate in ambient conditions and has a continuously variable resistance opens up a huge range of potential applications."

There is more about this topic on Dr Kenyon's website, where El Reg found the table below:

YCL ReRAM table

UCL ReRAM data table

Dr Kenyon added: “We are also working on making a quartz device with a view to developing transparent electronics.” This could be used to give touch screens and other mobile device screens a memory capability. ®

"Resistive switching in silicon suboxide films" by Adnan Mehonic, Sébastien Cueff, Maciej Wojdak, Stephen Hudziak, Olivier Jambois, Christophe Labbé, Blas Garrido, Richard Rizk and Anthony J Kenyon has been published in the Journal of Applied Physics.


Other stories you might like

  • Despite global uncertainty, $500m hit doesn't rattle Nvidia execs
    CEO acknowledges impact of war, pandemic but says fundamentals ‘are really good’

    Nvidia is expecting a $500 million hit to its global datacenter and consumer business in the second quarter due to COVID lockdowns in China and Russia's invasion of Ukraine. Despite those and other macroeconomic concerns, executives are still optimistic about future prospects.

    "The full impact and duration of the war in Ukraine and COVID lockdowns in China is difficult to predict. However, the impact of our technology and our market opportunities remain unchanged," said Jensen Huang, Nvidia's CEO and co-founder, during the company's first-quarter earnings call.

    Those two statements might sound a little contradictory, including to some investors, particularly following the stock selloff yesterday after concerns over Russia and China prompted Nvidia to issue lower-than-expected guidance for second-quarter revenue.

    Continue reading
  • Another AI supercomputer from HPE: Champollion lands in France
    That's the second in a week following similar system in Munich also aimed at researchers

    HPE is lifting the lid on a new AI supercomputer – the second this week – aimed at building and training larger machine learning models to underpin research.

    Based at HPE's Center of Excellence in Grenoble, France, the new supercomputer is to be named Champollion after the French scholar who made advances in deciphering Egyptian hieroglyphs in the 19th century. It was built in partnership with Nvidia using AMD-based Apollo computer nodes fitted with Nvidia's A100 GPUs.

    Champollion brings together HPC and purpose-built AI technologies to train machine learning models at scale and unlock results faster, HPE said. HPE already provides HPC and AI resources from its Grenoble facilities for customers, and the broader research community to access, and said it plans to provide access to Champollion for scientists and engineers globally to accelerate testing of their AI models and research.

    Continue reading
  • Workday nearly doubles losses as waves of deals pushed back
    Figures disappoint analysts as SaaSy HR and finance application vendor navigates economic uncertainty

    HR and finance application vendor Workday's CEO, Aneel Bhusri, confirmed deal wins expected for the three-month period ending April 30 were being pushed back until later in 2022.

    The SaaS company boss was speaking as Workday recorded an operating loss of $72.8 million in its first quarter [PDF] of fiscal '23, nearly double the $38.3 million loss recorded for the same period a year earlier. Workday also saw revenue increase to $1.43 billion in the period, up 22 percent year-on-year.

    However, the company increased its revenue guidance for the full financial year. It said revenues would be between $5.537 billion and $5.557 billion, an increase of 22 percent on earlier estimates.

    Continue reading

Biting the hand that feeds IT © 1998–2022