Maybe Mars had 'warm' water after all

UK boffins point to meteorite evidence


UK researchers have unearthed a new argument in the yes-but-no-but-yes scientific debate about Martian water, saying that meteorite samples suggest water on the red planet was once warm enough for life.

In research published in Earth and Planetary Science Letters (abstract here), Dr John Bridges (Leicester University) and Dr Susanne Schwenzer (Open University) say structures found in a group of meteorites of Martian origin called nakhlites.

“This group of Martian meteorites contains small veins, which are filled with minerals formed by the action of water near the surface of Mars,” Dr Bridges says.

Examination of the “Lafayette nakhlite”, Dr Bridges says, reveals carbonates which would have formed by water rich in carbon dioxide at around 150°C, which later cooled to 50°C, at which point clays formed.

The structures in the nakhlites may have been caused by heat resulting from an impact on the surface of the planet, Dr Bridges states.

The Open University conducted modelling based on Dr Bridges’ observations, and these models suggest that subsurface water had both the right temperatures and nutrients to support microbial life. As the abstract states (in a lot more words):

“Our results show that environments associated with this type of fluid were habitable, unlike those associated with acid-sulphate fluids. Considering the timing of the nakhlite alteration, the most likely cause is impact-generated hydrothermal alteration of the nakhlite pile at the margins of an impact crater. The martian subsurface fluid forming phyllosilicates provided habitable temperatures and many of the nutrients required for life.” ®

Similar topics


Other stories you might like

  • Mars Express orbiter to get code update after 19 years
    And over millions of miles, too. Piece of cake!?

    The software on ESA's Mars Express spacecraft is to be upgraded after nearly two decades, giving the orbiter capabilities to hunt for water beneath the planet and study its larger moon, Phobos.

    Mars Express was launched on June 2, 2003, and was initially made up of two components: the Mars Express Orbiter and the Beagle 2 lander. Unfortunately, the lander failed to make contact with Earth after it was released and arrived at the surface of the Red Planet. It is presumed lost. The orbiter, however, is still working after 19 years in service, spinning around Mars.

    Now, engineers at the Istituto Nazionale di Astrofisica (INAF), Italy, are revamping the spacecraft's software. The upgrade will allow the Mars Express Orbiter to continue searching for water locked beneath the Martian surface using its MARSIS radio-wave instrument and monitor the planet's closest satellite, Phobos, more efficiently. MARSIS is today operated by INAF and funded by the Italian Space Agency.

    Continue reading
  • NASA ignores InSight's battery woes in pursuit of data
    Space boffins: Nevermind ekeing out the battery, let it go out in a blaze of glory!

    Pondering what services to switch off to keep your laptop going just that bit longer? NASA engineers can relate, having decided the Mars InSight lander will go out on a high: they plan to burn through the remaining power to keep the science flowing until the bitter end.

    The InSight lander is in a precarious position regarding power. A build-up of dust has meant the spacecraft's solar panels are no longer generating anywhere near enough power to keep the batteries charged. The result is an automatic shutdown of the payload, although there is a chance InSight might still be able to keep communicating until the end of the year.

    Almost all of InSight's instruments have already been powered down, but the seismometer remains active and able to detect seismic activity on Mars (such as Marsquakes.) The seismometer was expected to be active until the end of June, at which point it too would be shut-down in order to eke out the lander's dwindling supply of power just a little longer.

    Continue reading
  • Mars helicopter needs patch to fly again after sensor failure
    NASA engineers continue to show Ingenuity as uplinking process begins

    The Mars Ingenuity helicopter is in need of a patch to work around a failed sensor before another flight can be attempted.

    The helicopter's inclinometer failed during a recommissioning effort ahead of the 29th flight. The sensor is critical as it will reposition the craft nearer to the Perseverance rover for communication purposes.

    Although not required during flight, the inclinometer (which consists of two accelerometers) is used to measure gravity prior to spin-up and takeoff. "The direction of the sensed gravity is used to determine how Ingenuity is oriented relative to the downward direction," said Håvard Grip, Ingenuity Mars Helicopter chief pilot.

    Continue reading
  • NASA's InSight doomed as Mars dust coats solar panels
    The little lander that couldn't (any longer)

    The Martian InSight lander will no longer be able to function within months as dust continues to pile up on its solar panels, starving it of energy, NASA reported on Tuesday.

    Launched from Earth in 2018, the six-metre-wide machine's mission was sent to study the Red Planet below its surface. InSight is armed with a range of instruments, including a robotic arm, seismometer, and a soil temperature sensor. Astronomers figured the data would help them understand how the rocky cores of planets in the Solar System formed and evolved over time.

    "InSight has transformed our understanding of the interiors of rocky planets and set the stage for future missions," Lori Glaze, director of NASA's Planetary Science Division, said in a statement. "We can apply what we've learned about Mars' inner structure to Earth, the Moon, Venus, and even rocky planets in other solar systems."

    Continue reading
  • Mars Ingenuity helicopter and Perseverance are talking again
    NASA drops heater temp to boost batteries as dust hits solar supply

    The long-lived Ingenuity helicopter has made contact with NASA's Perseverance rover on Mars after an unexpected communications blackout.

    Ingenuity just passed the milestone of a year of operations on the Red Planet, after being designed for five experimental test flights over 30 Martian days during 2021. Thus far, the helicopter has managed to fly more than 4.2 miles in 28 sorties, proving NASA's reputation for over-engineering its space kit.

    Ingenuity uses Perseverance as a base station to send data to and receive commands from Earth. Well, up until May 3, when communications between rover and helicopter dropped out. The problem? Dust, it turns out, which was stopping the helicopter from charging properly from its solar panels.

    Continue reading
  • Intel: Our fabs can mass produce silicon qubit devices
    If conventional silicon manufacturing processes can be repurposed, it could help create practical quantum systems

    Updated Intel and QuTech claim to have created the first silicon qubits for quantum logic gates to be made using the same manufacturing facilities that Intel employs to mass produce its processor chips.

    The demonstration is described by the pair as a crucial step towards scaling to the thousands of qubits that are required for practical quantum computation.

    According to Intel, its engineers working with scientists from QuTech have successfully created the first silicon qubits at scale at Intel's D1 manufacturing factory in Hillsboro, Oregon, using a 300mm wafer similar to those the company uses to mass produce processor chips.

    Continue reading
  • TACC Frontera's 2022: Academic supercomputer to run intriguing experiments
    Plus: Director reveals 10 million node hours, 50-70 million core hours went into COVID-19 research

    The largest academic supercomputer in the world has a busy year ahead of it, with researchers from 45 institutions across 22 states being awarded time for its coming operational run.

    Frontera, which resides at the University of Texas at Austin's Texas Advanced Computing Center (TACC), said it has allocated time for 58 experiments through its Large Resource Allocation Committee (LRAC), which handles the largest proposals. To qualify for an LRAC grant, proposals must be able to justify effective use of a minimum of 250,000 node hours and show that they wouldn't be able to do the research otherwise. 

    Two additional grant types are available for smaller projects as well, but LRAC projects utilize the majority of Frontera's nodes: An estimated 83% of Frontera's 2022-23 workload will be LRAC projects. 

    Continue reading

Biting the hand that feeds IT © 1998–2022