What Compsci textbooks don't tell you: Real world code sucks

Bodged code, strapped-on patches, beellion dollar screw-ups... and that's the good stuff


There’s a kind of cognitive dissonance in most people who’ve moved from the academic study of computer science to a job as a real-world software developer. The conflict lies in the fact that, whereas nearly every sample program in every textbook is a perfect and well-thought-out specimen, virtually no software out in the wild is, and this is rarely acknowledged.

To be precise: a tremendous amount of source code written for real applications is not merely less perfect than the simple examples seen in school — it’s outright terrible by any number of measures.

Due to bad design, sloppy or opaque coding practices, non-scalability, and layers of ugly “temporary” patches, it’s often difficult to maintain, harder still to modify or upgrade, painful or impossible for a new person joining the dev team to understand, or (a different kind of problem) slow and inefficient. In short, a mess.

Of course there are many exceptions, but they’re just that: exceptions. In my experience, software is, almost as a rule, bad in one way or another. And lest I be accused of over-generalising: in more than 20 years I’ve done work for maybe a dozen companies, almost all of them in the banking industry and many of them household names.

The technology people employed at these companies are considered to be the very best, if only because the pay tends to be so good. I’ll play it safe and stick to my actual experience in the financial sector even though I'm convinced this state of affairs is not limited to that one industry.

Getting back to the cognitive-dissonance problem: in casual discussion, developers and tech managers will talk about all the wonderful things their system does, the stellar technical skills of their team, and how much their users love them — and all that may be true.

But talk privately, colleague-to-colleague, to one of these developers about the quality of the code base, all the daily headaches, the quick hacks and patches, the laughable mistakes made by the original author of the system (who left the firm a couple of years ago), or the fear that the person who “knows the system” will leave for another job, and you’ll hear a different story: “Of course there are problems. Everyone knows that. Things are always this way — it’s barely even necessary to mention it.”

Very few coworkers with whom I’ve broached this subject have seen things differently, and I’ve often heard stories of costly screw-ups that would shock the most jaded techie. But on a daily basis, in all but the worst cases, it’s easier for developers to talk about things like what their system does, or how elegant its user interface is, than to dwell on any horrors lurking inside.

It also may be that, after years of working on a system with serious maintainability flaws, people simply become accustomed to the strange procedures they have to go through regularly to keep things running.

Complex systems + borked code = beelllions down the drain

In the financial business there have been several software-related blowups in the last few years that were big enough to make it onto the evening news. To name just three, there were: the Nasdaq failure that wreaked havoc with Facebook’s IPO; a trading fiasco at Knight Capital in August that led to widespread market disruption and a $400m drop in Knight’s market value; and the “flash crash” of May, 2010, which caused market losses of at least $1 trillion in a matter of minutes.

System glitches and bugs this visible and this costly are relatively rare, but for every one of them there are a hundred smaller ones that only a handful of people ever hear about. A Reuters article this summer with the title “Morgan Stanley Smith Barney Rainmakers Consider Exit” said this: “Several dozen Morgan Stanley Smith Barney advisers who manage tens of billions of dollars of client money are considering leaving the firm, saying that widespread technology problems have made it very difficult for them to do their jobs.” (Italics mine.)

These are all outright failures in highly complex systems, but poorly written code can crop up in applications of any size, and it may not lead to a direct, quantifiable loss. It will, however, require untold extra hours of work for routine support, make even minor upgrades painful, or force systems to be retired prematurely (in some cases, before they’ve even gone live). How does this happen?

Similar topics

Narrower topics


Other stories you might like

  • Lonestar plans to put datacenters in the Moon's lava tubes
    How? Founder tells The Register 'Robots… lots of robots'

    Imagine a future where racks of computer servers hum quietly in darkness below the surface of the Moon.

    Here is where some of the most important data is stored, to be left untouched for as long as can be. The idea sounds like something from science-fiction, but one startup that recently emerged from stealth is trying to turn it into a reality. Lonestar Data Holdings has a unique mission unlike any other cloud provider: to build datacenters on the Moon backing up the world's data.

    "It's inconceivable to me that we are keeping our most precious assets, our knowledge and our data, on Earth, where we're setting off bombs and burning things," Christopher Stott, founder and CEO of Lonestar, told The Register. "We need to put our assets in place off our planet, where we can keep it safe."

    Continue reading
  • Conti: Russian-backed rulers of Costa Rican hacktocracy?
    Also, Chinese IT admin jailed for deleting database, and the NSA promises no more backdoors

    In brief The notorious Russian-aligned Conti ransomware gang has upped the ante in its attack against Costa Rica, threatening to overthrow the government if it doesn't pay a $20 million ransom. 

    Costa Rican president Rodrigo Chaves said that the country is effectively at war with the gang, who in April infiltrated the government's computer systems, gaining a foothold in 27 agencies at various government levels. The US State Department has offered a $15 million reward leading to the capture of Conti's leaders, who it said have made more than $150 million from 1,000+ victims.

    Conti claimed this week that it has insiders in the Costa Rican government, the AP reported, warning that "We are determined to overthrow the government by means of a cyber attack, we have already shown you all the strength and power, you have introduced an emergency." 

    Continue reading
  • China-linked Twisted Panda caught spying on Russian defense R&D
    Because Beijing isn't above covert ops to accomplish its five-year goals

    Chinese cyberspies targeted two Russian defense institutes and possibly another research facility in Belarus, according to Check Point Research.

    The new campaign, dubbed Twisted Panda, is part of a larger, state-sponsored espionage operation that has been ongoing for several months, if not nearly a year, according to the security shop.

    In a technical analysis, the researchers detail the various malicious stages and payloads of the campaign that used sanctions-related phishing emails to attack Russian entities, which are part of the state-owned defense conglomerate Rostec Corporation.

    Continue reading
  • FTC signals crackdown on ed-tech harvesting kid's data
    Trade watchdog, and President, reminds that COPPA can ban ya

    The US Federal Trade Commission on Thursday said it intends to take action against educational technology companies that unlawfully collect data from children using online educational services.

    In a policy statement, the agency said, "Children should not have to needlessly hand over their data and forfeit their privacy in order to do their schoolwork or participate in remote learning, especially given the wide and increasing adoption of ed tech tools."

    The agency says it will scrutinize educational service providers to ensure that they are meeting their legal obligations under COPPA, the Children's Online Privacy Protection Act.

    Continue reading
  • Mysterious firm seeks to buy majority stake in Arm China
    Chinese joint venture's ousted CEO tries to hang on - who will get control?

    The saga surrounding Arm's joint venture in China just took another intriguing turn: a mysterious firm named Lotcap Group claims it has signed a letter of intent to buy a 51 percent stake in Arm China from existing investors in the country.

    In a Chinese-language press release posted Wednesday, Lotcap said it has formed a subsidiary, Lotcap Fund, to buy a majority stake in the joint venture. However, reporting by one newspaper suggested that the investment firm still needs the approval of one significant investor to gain 51 percent control of Arm China.

    The development comes a couple of weeks after Arm China said that its former CEO, Allen Wu, was refusing once again to step down from his position, despite the company's board voting in late April to replace Wu with two co-chief executives. SoftBank Group, which owns 49 percent of the Chinese venture, has been trying to unentangle Arm China from Wu as the Japanese tech investment giant plans for an initial public offering of the British parent company.

    Continue reading
  • SmartNICs power the cloud, are enterprise datacenters next?
    High pricing, lack of software make smartNICs a tough sell, despite offload potential

    SmartNICs have the potential to accelerate enterprise workloads, but don't expect to see them bring hyperscale-class efficiency to most datacenters anytime soon, ZK Research's Zeus Kerravala told The Register.

    SmartNICs are widely deployed in cloud and hyperscale datacenters as a means to offload input/output (I/O) intensive network, security, and storage operations from the CPU, freeing it up to run revenue generating tenant workloads. Some more advanced chips even offload the hypervisor to further separate the infrastructure management layer from the rest of the server.

    Despite relative success in the cloud and a flurry of innovation from the still-limited vendor SmartNIC ecosystem, including Mellanox (Nvidia), Intel, Marvell, and Xilinx (AMD), Kerravala argues that the use cases for enterprise datacenters are unlikely to resemble those of the major hyperscalers, at least in the near term.

    Continue reading

Biting the hand that feeds IT © 1998–2022