MIT boffins demonstrate NEW form of magnetism

Atom can't tell up from down in 'quantum spin liquid'


A state of magnetism predicted in 1987 has been observed for the first time at MIT, with researchers saying that it might one day find applications in storage and communications technologies.

The “one day” is still quite some way off, however, with the researchers only at the very beginning of observing the properties of what’s called a “quantum spin liquid” (QSL).

The properties of a quantum spin liquid are revealed in the spin properties of atoms in a crystal. Rather than settling into a stable state, as happens in ferromagnetic and antiferromagnetic materials, the “spin moment” in a QSL is constantly changing.

MIT Herbertsmithite

MIT's Herbertsmithite crystal

In the familiar compass needle, magnetism comes from the alignment of all spins in the same direction. The second magnetic state, antiferromagnetism, was first proposed in the 1930s. In an antiferromagnetic material, the spin states align in such a way that the overall magnetism is zero, unless energy is applied. This property is exploited in hard drive read heads.

In the new state of magnetism, the magnetic orientation of particles is unable to settle into an ordered state. Instead, they fluctuate constantly, driven by quantum interactions between particles.

QSL only exists in a type of crystal called a kagome lattice. In the material examined in the MIT research, Herbertsmithite (named after its discoverer), copper atoms lie at the corners of triangular structures. Two of the copper atoms are able to align their spins in an “up-down” arrangement – but the third copper atom can’t align with both the others, so it flips between up and down.

Neutron scattering in Herbertsmithite

The blue regions in the NIST scan of Herbertsmithite show magnetically ordered regions. The green regions are exciting: they're where the spin state is disordered. Image: NIST

To actually observe the QSL, the researchers spent years manufacturing high-purity Herbertsmithite. The test sample was then imaged using the Multi-Axis Crystal Spetrometer (MACS) at the NIST Center for Neutron Research.

In a disordered material, neutrons scatter evenly across the sample. In the QSL sample, some regions scatter neutrons in a way consistent with magnetism – but in other regions the scattering appears disordered (those regions where the atom’s spin fails to settle down).

Wait, there’s more

Along the way, the researchers made another possible discovery as significant as the QSL: they believe they’ve observed fractionalised quantum states.

Quantum states are generally assumed to exist only as whole numbers – after all, the basis of quantum physics is that the quantum is the smallest possible change in state that can exist.

The MIT researchers say that their material exhibits a state with fractionalised excitations: “spinons” whose excited states apparently exist in a contiuum between quantum states. In the MIT release, the researches say observing this “highly controversial idea” is “a remarkable first”.

The research, conducted by professor Young Lee, Tianheng Han (lead author of the paper), and collaborators from MIT, NIST, Maryland University and Johns Hopkins University, is published in Nature (abstract here). ®

Similar topics

Broader topics


Other stories you might like

  • Running Windows 10? Microsoft is preparing to fire up the update engines

    Winter Windows Is Coming

    It's coming. Microsoft is preparing to start shoveling the latest version of Windows 10 down the throats of refuseniks still clinging to older incarnations.

    The Windows Update team gave the heads-up through its Twitter orifice last week. Windows 10 2004 was already on its last gasp, have had support terminated in December. 20H2, on the other hand, should be good to go until May this year.

    Continue reading
  • Throw away your Ethernet cables* because MediaTek says Wi-Fi 7 will replace them

    *Don't do this

    MediaTek claims to have given the world's first live demo of Wi-Fi 7, and said that the upcoming wireless technology will be able to challenge wired Ethernet for high-bandwidth applications, once available.

    The fabless Taiwanese chip firm said it is currently showcasing two Wi-Fi 7 demos to key customers and industry collaborators, in order to demonstrate the technology's super-fast speeds and low latency transmission.

    Based on the IEEE 802.11be standard, the draft version of which was published last year, Wi-Fi 7 is expected to provide speeds several times faster than Wi-Fi 6 kit, offering connections of at least 30Gbps and possibly up to 40Gbps.

    Continue reading
  • Windows box won't boot? SystemRescue 9 may help

    An ISO image you can burn or drop onto a USB key

    The latest version of an old friend of the jobbing support bod has delivered a new kernel to help with fixing Microsoft's finest.

    It used to be called the System Rescue CD, but who uses CDs any more? Enter SystemRescue, an ISO image that you can burn, or just drop onto your Ventoy USB key, and which may help you to fix a borked Windows box. Or a borked Linux box, come to that.

    SystemRescue 9 includes Linux kernel 5.15 and a minimal Xfce 4.16 desktop (which isn't loaded by default). There is a modest selection of GUI tools: Firefox, VNC and RDP clients and servers, and various connectivity tools – SSH, FTP, IRC. There's also some security-related stuff such as Yubikey setup, KeePass, token management, and so on. The main course is a bunch of the usual Linux tools for partitioning, formatting, copying, and imaging disks. You can check SMART status, mount LVM volumes, rsync files, and other handy stuff.

    Continue reading

Biting the hand that feeds IT © 1998–2022