Chip daddy Mead: 'A bunch of big egos' are strangling science

The scientific revolution has stalled, here's how to kickstart it


ISSCC Microelectronics pioneer, Caltech professor emeritus, and all-around smart guy Carver Mead believes that the scientific revolution that began with the discovery of special relativity and quantum mechanics has stalled, and that it's up to us to kickstart it.

"A bunch of big egos got in the way," he told his audience of 3,000-plus chipheads at the International Soild-State Circuits Conference (ISSCC) in San Francisco on Monday.

Much more work needs to be done to restart that revolution, Mead said, with the goal of explaining in an intuitive way how all matter in the universe relates to and affects all other matter, and how to explore those interrelationships in a way that isn't "buried in enormous piles of obscure mathematics."

If you're not familiar with Mead, you should be. Now 78, he received the National Medal of Technology in 2003, cited for his "pioneering contributions to the microelectronics field, that include spearheading the development of tools and techniques for modern integrated-circuit design, laying the foundation for fabless semiconductor companies, catalyzing the electronic-design automation field, training generations of engineers that have made the United States the world leader in microelectronics technology, and founding more than 20 companies including Actel Corporation, Silicon Compilers, Synaptics, and Sonic Innovations."

Those credentials have earned Mead the right to be listened to — although he'd be the first to argue that mere credentials and achievements don't guarantee intelligent thought. In fact, they can cause intellectual ossification.

To illistrate that point, Mead told the story of how Charles Townes, the inventor of the laser and maser, took his ideas to the leading quantum-mechanics nabobs at the time, Neils Bohr and Werner Heisenberg.

"They both laughed at him, and basically said, 'Sonny, you just don't seem to understand how quantum mechanics works'," Mead told his ISSCC audience. "Well, history has shown that it wasn't Charlie who didn't know how quantum mechanics works, it was the pontifical experts in the field who didn't know how it worked."

Mead said that we're all taught that there was a revolution in scientific thought that started with relativity and quantum mechanics. "Actually, that's not the case," he said. "A revolution is when something goes clear around. And what happened starting in the first 25 years of the 20th century was that there was the beginning of a revolution, and it got stuck about a quarter of the way around."

Carver Mead

A younger Carver Mead

And it remain stuck, he believes. "What we're living with today is a bunch of mysteries and misconceptions that came about partly because people couldn't imagine nature being as interesting as it really is, and partly because a bunch of big egos got in the way and wouldn't let the revolution proceed."

From Mead's point of view, the key to a more intuitive explanation of the universe lies in not only the interrelationships of matter and forces, but also a better understanding of the electron. "We need to treat the wave functions of our electrons as real wave functions," he said. "I have found personally that I had to go all the way back and reformulate the laws of electromagnetism, starting with the quantum nature of the electron as the foundation."

But it's those interrelationships that most fascinate Mead – that, and how the origins of science focussed not on a wide-ranging study of interrelationships, but rather on experimental isolation.

"Modern science started with an idea that was really given to us by Galileo," he said. "The idea was the isolated experiment. You took something and you very carefully sheltered from all the influences around, and then you were seeing the fundamental physics of that object."

That methodology, he said, served science well and led to tremendous advances. "But now it's holding us back from a deeper understanding of how the universe works."

A more holistic approach – if you'll forgive your humble Reg reporter from using that truly Californian term – was suggested by none other than the Austrian physicist and philosopher Ernst Mach. As Mead tells it, Mach "took Newton to task. He said, 'Look, your idea of absolute motion is a stupid idea. Motion can only have meaning when what it is that's moving is moving relative to other matter in the universe'."

Einstein, of course, was mightily influenced by what the ex–patent clerk called Mach's Principle, which Mead explained as the proposition that "the inertia of every element of matter is due to its interaction with all the other elements of matter in the universe."

We haven't fully followed that investigative road, Mead said. "Instead what we've done is we've treated isolated objects as if all their attributes were just given us, and [we] haven't asked where they came from," he said. "Things like the inertia of an object, the rest energy of an object, the velocity of light — all those things. We have a list of fundamental constants that we're not allowed to ask where they come from."

If we want to get that stalled 100-year-old revolution unstuck, Mead said, we've got to ask – and discover – where those constants come from, and not just believe in them as handed down by academics and buried in mountains of math. We need to discover their basis in the interactions and interrelationships of all matter in the universe.

"It's a mind-opening experience to think about physical law this way," Mead said. "I personally am spending the entire rest of my life doing that. When we're done with this revolution, we will have a way of thinking about the universe that's vastly more intuitive and vastly more inspiring."

In a conference stuffed with sessions bearing titles such as "A 2.5GHz 2.2mW/25μW On/Off-State Power 2psrms-Long-Term-Jitter Digital Clock Multiplier with 3-Reference-Cycles Power-On Time", Mead's musing were a welcome big-picture refresher. ®

Similar topics


Other stories you might like

  • NASA's Psyche mission: 2022 launch is off after software arrives late
    Launch window slides into 2023 or 2024 for asteroid-probing project

    Sadly for NASA's mission to take samples from the asteroid Psyche, software problems mean the spacecraft is going to miss its 2022 launch window.

    The US space agency made the announcement on Friday: "Due to the late delivery of the spacecraft's flight software and testing equipment, NASA does not have sufficient time to complete the testing needed ahead of its remaining launch period this year, which ends on October 11."

    While it appears the software and testbeds are now working, there just isn't enough time to get everything done before a SpaceX Falcon Heavy sends the spacecraft to study a metallic-rich asteroid of the same name.

    Continue reading
  • NASA circles August in its diary to put Artemis I capsule in Moon orbit
    First steps by humans to recapture planet's natural satellite

    NASA is finally ready to launch its unmanned Orion spacecraft and put it in the orbit of the Moon. Lift-off from Earth is now expected in late August using a Space Launch System (SLS) rocket.

    This launch, a mission dubbed Artemis I, will be a vital stage in the Artemis series, which has the long-term goal of ferrying humans to the lunar surface using Orion capsules and SLS technology.

    Earlier this week NASA held a wet dress rehearsal (WDR) for the SLS vehicle – fueling it and getting within 10 seconds of launch. The test uncovered 13 problems, including a hydrogen fuel leak in the main booster, though NASA has declared that everything's fine for a launch next month.

    Continue reading
  • Photonic processor can classify millions of images faster than you can blink
    We ask again: Has science gone too far?

    Engineers at the University of Pennsylvania say they've developed a photonic deep neural network processor capable of analyzing billions of images every second with high accuracy using the power of light.

    It might sound like science fiction or some optical engineer's fever dream, but that's exactly what researchers at the American university's School of Engineering and Applied Sciences claim to have done in an article published in the journal Nature earlier this month.

    The standalone light-driven chip – this isn't another PCIe accelerator or coprocessor – handles data by simulating brain neurons that have been trained to recognize specific patterns. This is useful for a variety of applications including object detection, facial recognition, and audio transcription to name just a few.

    Continue reading
  • World’s smallest remote-controlled robots are smaller than a flea
    So small, you can't feel it crawl

    Video Robot boffins have revealed they've created a half-millimeter wide remote-controlled walking robot that resembles a crab, and hope it will one day perform tasks in tiny crevices.

    In a paper published in the journal Science Robotics , the boffins said they had in mind applications like minimally invasive surgery or manipulation of cells or tissue in biological research.

    With a round tick-like body and 10 protruding legs, the smaller-than-a-flea robot crab can bend, twist, crawl, walk, turn and even jump. The machines can move at an average speed of half their body length per second - a huge challenge at such a small scale, said the boffins.

    Continue reading
  • Intel: Our fabs can mass produce silicon qubit devices
    If conventional silicon manufacturing processes can be repurposed, it could help create practical quantum systems

    Updated Intel and QuTech claim to have created the first silicon qubits for quantum logic gates to be made using the same manufacturing facilities that Intel employs to mass produce its processor chips.

    The demonstration is described by the pair as a crucial step towards scaling to the thousands of qubits that are required for practical quantum computation.

    According to Intel, its engineers working with scientists from QuTech have successfully created the first silicon qubits at scale at Intel's D1 manufacturing factory in Hillsboro, Oregon, using a 300mm wafer similar to those the company uses to mass produce processor chips.

    Continue reading
  • TACC Frontera's 2022: Academic supercomputer to run intriguing experiments
    Plus: Director reveals 10 million node hours, 50-70 million core hours went into COVID-19 research

    The largest academic supercomputer in the world has a busy year ahead of it, with researchers from 45 institutions across 22 states being awarded time for its coming operational run.

    Frontera, which resides at the University of Texas at Austin's Texas Advanced Computing Center (TACC), said it has allocated time for 58 experiments through its Large Resource Allocation Committee (LRAC), which handles the largest proposals. To qualify for an LRAC grant, proposals must be able to justify effective use of a minimum of 250,000 node hours and show that they wouldn't be able to do the research otherwise. 

    Two additional grant types are available for smaller projects as well, but LRAC projects utilize the majority of Frontera's nodes: An estimated 83% of Frontera's 2022-23 workload will be LRAC projects. 

    Continue reading
  • Scientists make spin ice breakthrough
    Artificial spin ice with smallest features ever created could be part of novel low-power HPC

    Researchers at the Paul Scherrer Institute and ETH Zurich in Switzerland have managed to accomplish a technological breakthrough that could lead to new forms of low-energy supercomputing.

    It's based around something called artificial spin ice: think of water molecules freezing into a crystalline lattice of ice, and then replace the water with nanoscale magnets. The key to building a good spin ice is getting the magnetic particles so small that they can only be polarized, or "spun," by dropping them below a certain temperature. 

    When those magnets are frozen, they align into a lattice shape, just like water ice, but with the added potential of being rearranged into a near infinity of magnetic combinations. Here the use cases begin to emerge, and a couple breakthroughs from this experiment could move us in the right direction.

    Continue reading

Biting the hand that feeds IT © 1998–2022