Inside Intel's deal to let FPGA biz Altera use its 22nm TriGate fabs

As Achronix loses its Chipzilla exclusivity


Analysis A little over two years ago, upstart FPGA maker Achronix Semiconductor scored a big win over its rivals, Altera and Xilinx: it talked Intel into letting it use its cutting-edge chip factories to etch field-programmable gate array (FPGA) chips using Chipzilla's 22-nanometer TriGate process.

And now Altera has done some fast talking and has inked its own deal to use Intel's fabs.

FPGAs are malleable and can be tweaked to change their basic functions in ways that an application-specific integrated circuit (ASIC) cannot; you want to use ASICs when you have hundreds of thousands to millions of units and you can spread the cost of chip design over that volume.

But FPGAs are better if you are dealing with low-volume electronics and you want to be able to reprogram the chip rather than pay for a whole redesign. People have been trying to build reprogrammable computers (at the chip level, not the systems software level) for a while, and have succeeded in using them as coprocessors and special function accelerators.

The news of the Altera deal comes only a few days after Achronix announced it is shipping the Speedster22i FPGA [PDF] using the TriGate process at 22 nanometers.

Back when the Achronix fab deal was done with Intel in November 2010, the agreement called for the Speedster22i FPGA to come with one million lookup tables (LUTs), which are akin to gate counts in an ASIC, and for the chip to run at 1.5GHz, the same clock speed as the prior Speedster chips.

The plan is to eventually push it up to 2.5 million LUTs, which is functionally equivalent to an ASIC with 20 million gates. Three different variants of the Speedster22i FPGA will be made available with the HD1000 development board, which comes on a PCI-Express card and cost $13,000 with a software development kit.

By the way, the plan was to have the Speedster22i FPGA out the Intel fab door by the end of 2011, so clearly there were some issues getting the Achronix FPGAs onto Intel's 22nm processes. The idea was to take the price of a high-end FPGA chip down from about $1,000 to around $400, according to Achronix at the time the deal was struck, so apparently most of the cost in that development card above is the software.

Under the deal inked between FPGA rival Altera and Intel, Altera will move production of the Stratix family of FPGAs to Intel's future 14-nanometer technologies, a significant jump from the 28-nanometer processes used by Taiwan Semiconductor Manufacturing Corp to etch the current Stratix V FPGAs.

"Altera's FPGAs using Intel 14-nm technology will enable customers to design the most advanced, highest-performing FPGAs in the industry," said John Daane, CEO at Altera, in a statement. "In addition, Altera gains a tremendous competitive advantage at the high end in that we are the only major FPGA company with access to this technology."

Well, how long that lasts – and how long rival Xilinx remains outside of Intel's fabs – is an open question. Intel surely wants all three FPGA makers to keep the wafer bakers warm and cover some of the billions of dollars that Chipzilla invests in foundries. Right?

Wrong. The terms of the deal cut between Intel and Altera were not disclosed, but apparently Intel did not keep its options open with the deal it cut with Altera. According to a report in the Wall Street Journal, Intel agreed to a twelve-year deal with Altera and said that the other major suppliers of FPGAs – that is mainly Xilinx – would not be given access to Chipzilla's fabs.

Altera and TSMC are already cooking up future Stratix FPGAs based on 20-nanometer processes, and Altera said in a separate statement that these were on track. It would "continue to leverage future TSMC process technologies in its tailored product portfolio for performance, bandwidth, and power efficiency needs across diverse end applications."

In other words, Altera is not putting all of its chips in one foundry's basket, particularly not after a 20-year partnership with TSMC. If you can afford to do it, double sourcing chips is probably the best strategy because all foundries screw up and more often than we probably know. You want to have options, and you have to be willing to pay for them and hope it pans out over the long haul. ®

Broader topics


Other stories you might like

  • Intel is running rings around AMD and Arm at the edge
    What will it take to loosen the x86 giant's edge stranglehold?

    Analysis Supermicro launched a wave of edge appliances using Intel's newly refreshed Xeon-D processors last week. The launch itself was nothing to write home about, but a thought occurred: with all the hype surrounding the outer reaches of computing that we call the edge, you'd think there would be more competition from chipmakers in this arena.

    So where are all the AMD and Arm-based edge appliances?

    A glance through the catalogs of the major OEMs – Dell, HPE, Lenovo, Inspur, Supermicro – returned plenty of results for AMD servers, but few, if any, validated for edge deployments. In fact, Supermicro was the only one of the five vendors that even offered an AMD-based edge appliance – which used an ageing Epyc processor. Hardly a great showing from AMD. Meanwhile, just one appliance from Inspur used an Arm-based chip from Nvidia.

    Continue reading
  • TSMC may surpass Intel in quarterly revenue for first time
    Fab frenemies: x86 giant set to give Taiwanese chipmaker more money as it revitalizes foundry business

    In yet another sign of how fortunes have changed in the semiconductor industry, Taiwanese foundry giant TSMC is expected to surpass Intel in quarterly revenue for the first time.

    Wall Street analysts estimate TSMC will grow second-quarter revenue 43 percent quarter-over-quarter to $18.1 billion. Intel, on the other hand, is expected to see sales decline 2 percent sequentially to $17.98 billion in the same period, according to estimates collected by Yahoo Finance.

    The potential for TSMC to surpass Intel in quarterly revenue is indicative of how demand has grown for contract chip manufacturing, fueled by companies like Qualcomm, Nvidia, AMD, and Apple who design their own chips and outsource manufacturing to foundries like TSMC.

    Continue reading
  • Intel withholds Ohio fab ceremony over US chip subsidies inaction
    $20b factory construction start date unchanged – but the x86 giant is not happy

    Intel has found a new way to voice its displeasure over Congress' inability to pass $52 billion in subsidies to expand US semiconductor manufacturing: withholding a planned groundbreaking ceremony for its $20 billion fab mega-site in Ohio that stands to benefit from the federal funding.

    The Wall Street Journal reported that Intel was tentatively scheduled to hold a groundbreaking ceremony for the Ohio manufacturing site with state and federal bigwigs on July 22. But, in an email seen by the newspaper, the x86 giant told officials Wednesday it was indefinitely delaying the festivities "due in part to uncertainty around" the stalled Creating Helpful Incentives to Produce Semiconductors (CHIPS) for America Act.

    That proposed law authorizes the aforementioned subsidies for Intel and others, and so its delay is holding back funding for the chipmakers.

    Continue reading
  • Linux Foundation thinks it can get you interested in smartNICs
    Step one: Make them easier to program

    The Linux Foundation wants to make data processing units (DPUs) easier to deploy, with the launch of the Open Programmable Infrastructure (OPI) project this week.

    The program has already garnered support from several leading chipmakers, systems builders, and software vendors – Nvidia, Intel, Marvell, F5, Keysight, Dell Tech, and Red Hat to name a few – and promises to build an open ecosystem of common software frameworks that can run on any DPU or smartNIC.

    SmartNICs, DPUs, IPUs – whatever you prefer to call them – have been used in cloud and hyperscale datacenters for years now. The devices typically feature onboard networking in a PCIe card form factor and are designed to offload and accelerate I/O-intensive processes and virtualization functions that would otherwise consume valuable host CPU resources.

    Continue reading
  • AMD to end Threadripper Pro 5000 drought for non-Lenovo PCs
    As the House of Zen kills off consumer-friendly non-Pro TR chips

    A drought of AMD's latest Threadripper workstation processors is finally coming to an end for PC makers who faced shortages earlier this year all while Hong Kong giant Lenovo enjoyed an exclusive supply of the chips.

    AMD announced on Monday it will expand availability of its Ryzen Threadripper Pro 5000 CPUs to "leading" system integrators in July and to DIY builders through retailers later this year. This announcement came nearly two weeks after Dell announced it would release a workstation with Threadripper Pro 5000 in the summer.

    The coming wave of Threadripper Pro 5000 workstations will mark an end to the exclusivity window Lenovo had with the high-performance chips since they launched in April.

    Continue reading
  • AMD bests Intel in cloud CPU performance study
    Overall price-performance in Big 3 hyperscalers a dead heat, says CockroachDB

    AMD's processors have come out on top in terms of cloud CPU performance across AWS, Microsoft Azure, and Google Cloud Platform, according to a recently published study.

    The multi-core x86-64 microprocessors Milan and Rome and beat Intel Cascade Lake and Ice Lake instances in tests of performance in the three most popular cloud providers, research from database company CockroachDB found.

    Using the CoreMark version 1.0 benchmark – which can be limited to run on a single vCPU or execute workloads on multiple vCPUs – the researchers showed AMD's Milan processors outperformed those of Intel in many cases, and at worst statistically tied with Intel's latest-gen Ice Lake processors across both the OLTP and CPU benchmarks.

    Continue reading
  • Lenovo reveals small but mighty desktop workstation
    ThinkStation P360 Ultra packs latest Intel Core processor, Nvidia RTX A5000 GPU, support for eight monitors

    Lenovo has unveiled a small desktop workstation in a new physical format that's smaller than previous compact designs, but which it claims still has the type of performance professional users require.

    Available from the end of this month, the ThinkStation P360 Ultra comes in a chassis that is less than 4 liters in total volume, but packs in 12th Gen Intel Core processors – that's the latest Alder Lake generation with up to 16 cores, but not the Xeon chips that we would expect to see in a workstation – and an Nvidia RTX A5000 GPU.

    Other specifications include up to 128GB of DDR5 memory, two PCIe 4.0 slots, up to 8TB of storage using plug-in M.2 cards, plus dual Ethernet and Thunderbolt 4 ports, and support for up to eight displays, the latter of which will please many professional users. Pricing is expected to start at $1,299 in the US.

    Continue reading

Biting the hand that feeds IT © 1998–2022