Wanna be a ROBOT OVERLORD? Boffins pave way with mind-controlled cursor

Electrodes planted inside epileptics' brains


Scientists have implanted electrodes in the brains of seven epileptic people in a bid to understand how humans learn new skills.

They wanted to see what happened when people learned to use a device called a brain-computer interface, which allows them to interact with computers simply by thinking. This revolutionary technology is in an embryonic state, but could one day allow paralysed people to operate robotic arms and legs to overcome their disability, or even allow stroke victims to speak again.

Researchers at the University of Washington implanted electrodes into the brains of severely epileptic people who were already in hospital for a procedure to identify which part of their brain was causing seizures.

Surgeons cut through the scalp, drilled into the skull and then installed a thin sheet of electrodes directly on top of the brain. They graciously allowed researchers to then have a go on the patients, who were asked to move a mouse cursor on screen by using their thoughts.

Their brainwaves were transmitted to a laptop, which was able to move the cursor within 40milliseconds of receiving the information.

Researchers found that when patients first started trying to move the cursor, brain activity was focused in the prefrontal cortex, an area which is associated with learning a new skill. But after 10 minutes, activity in this area decreased and the signals began looking more like those produced during automatic responses.

Jeffrey Ojemann, professor of neurological surgery, conducted the experiment at the University of Washington along with Jeremiah Wander, a doctoral student in bioengineering, and Rajesh Rao, a professor of computer science and engineering.

Ojemann said: “Now we have a brain marker that shows a patient has actually learned a task. Once the signal has turned off, you can assume the person has learned it.”

Previous experiments have successfully installed brain-computer interfaces in humans and monkeys, but this experiment was the first to clearly map the pattern of brainwaves as the device is used. One woman in Pittsburgh was even able to give high fives and feed herself chocolate using a mind-controlled robot arm.

“We now have a larger-scale view of what’s happening in the brain of a subject as he or she is learning a task,” Rao said. “The surprising result is that even though only a very localized population of cells is used in the brain-computer interface, the brain recruits many other areas that aren’t directly involved to get the job done.

“What we’re seeing is that practice makes perfect with these task. There’s a lot of engagement of the brain’s cognitive resources at the very beginning, but as you get better at the task, those resources aren’t needed anymore and the brain is freed up.”

In the future, less invasive procedures could allow humans to control machines by, for instance, wearing an electrode hat. However, implanting the device into the brain eliminates interference and allows scientists to record data at higher frequencies.

The researchers suggested that a wireless device could even be permanently built into a person's brain to allow them to control robotic limbs.

“This is one push as to how we can improve the devices and make them more useful to people,” Wander added. “If we have an understanding of how someone learns to use these devices, we can build them to respond accordingly.”

The research team, along with the National Science Foundation’s Engineering Research Center for Sensorimotor Neural Engineering headquartered at the University of Washington, will continue to develop these technologies. ®

The research is described in the paper "Distributed cortical adaptation during learning of a brain–computer interface task", published in Proceedings of the National Academy of Sciences of the United States of America. ®


Other stories you might like

  • Microsoft's do-it-all IDE Visual Studio 2022 came out late last year. How good is it really?

    Top request from devs? A Linux version

    Review Visual Studio goes back a long way. Microsoft always had its own programming languages and tools, beginning with Microsoft Basic in 1975 and Microsoft C 1.0 in 1983.

    The Visual Studio idea came from two main sources. In the early days, Windows applications were coded and compiled using MS-DOS, and there was a MS-DOS IDE called Programmer's Workbench (PWB, first released 1989). The company also came up Visual Basic (VB, first released 1991), which unlike Microsoft C++ had a Windows IDE. Perhaps inspired by VB, Microsoft delivered Visual C++ 1.0 in 1993, replacing the little-used PWB. Visual Studio itself was introduced in 1997, though it was more of a bundle of different Windows development tools initially. The first Visual Studio to integrate C++ and Visual Basic (in .NET guise) development into the same IDE was Visual Studio .NET in 2002, 20 years ago, and this perhaps is the true ancestor of today's IDE.

    A big change in VS 2022, released November, is that it is the first version where the IDE itself runs as a 64-bit process. The advantage is that it has access to more than 4GB memory in the devenv process, this being the shell of the IDE, though of course it is still possible to compile 32-bit applications. The main benefit is for large solutions comprising hundreds of projects. Although a substantial change, it is transparent to developers and from what we can tell, has been a beneficial change.

    Continue reading
  • James Webb Space Telescope has arrived at its new home – an orbit almost a million miles from Earth

    Funnily enough, that's where we want to be right now, too

    The James Webb Space Telescope, the largest and most complex space observatory built by NASA, has reached its final destination: L2, the second Sun-Earth Lagrange point, an orbit located about a million miles away.

    Mission control sent instructions to fire the telescope's thrusters at 1400 EST (1900 UTC) on Monday. The small boost increased its speed by about 3.6 miles per hour to send it to L2, where it will orbit the Sun in line with Earth for the foreseeable future. It takes about 180 days to complete an L2 orbit, Amber Straughn, deputy project scientist for Webb Science Communications at NASA's Goddard Space Flight Center, said during a live briefing.

    "Webb, welcome home!" blurted NASA's Administrator Bill Nelson. "Congratulations to the team for all of their hard work ensuring Webb's safe arrival at L2 today. We're one step closer to uncovering the mysteries of the universe. And I can't wait to see Webb's first new views of the universe this summer."

    Continue reading
  • LG promises to make home appliance software upgradeable to take on new tasks

    Kids: empty the dishwasher! We can’t, Dad, it’s updating its OS to handle baked on grime from winter curries

    As the right to repair movement gathers pace, Korea’s LG has decided to make sure that its whitegoods can be upgraded.

    The company today announced a scheme called “Evolving Appliances For You.”

    The plan is sketchy: LG has outlined a scenario in which a customer who moves to a locale with climate markedly different to their previous home could use LG’s ThingQ app to upgrade their clothes dryer with new software that makes the appliance better suited to prevailing conditions and to the kind of fabrics you’d wear in a hotter or colder climes. The drier could also get new hardware to handle its new location. An image distributed by LG shows off the ability to change the tune a dryer plays after it finishes a load.

    Continue reading

Biting the hand that feeds IT © 1998–2022