Better mobe antennas a stretch goal for radiocomm boffins

Signal isolation using modulation, not magnets, improves silicon-scale antennas


Antennas can be tuned by changing their shape, and a group of University of Texas Austin researchers wants to use that simple phenomenon to help get rid of noise in silicon-scale antennas.

The idea is to get rid of the magnetic isolation between transmit and receive antennas, which among other things would help shrink the RF part of products like mobile phones.

Conventional antennas are reciprocal – that is, an antenna that's designed to transmit efficiently in (for example) the 2.4 GHz WiFi band is also a good receiver in that band.

The problem for product designers is that they don't want the transmit and receive signals interfering with each other, so a lot of effort goes into isolation – for example, to stop nearby reflections interfering with the signal at a transmitter.

The University of Texas researchers, electrical and computer engineering associated professor Andrea Alù and postdoctoral fellows Yakir Hadad and Jason Soric, added a low-frequency modulation to the transmitted signal.

As the university blurb (at Eureka Alert) explains, the modulation “slowly changes the properties of the antenna as the radio-frequency signal travels along it. This modulation breaks the inherent symmetry of the antenna in transmission and reception, overcoming the reciprocity constraints.”

In other words, the low-frequency signal causes small changes in the shape of the antenna, and that changes its directional tuning without damaging its frequency response.

Their paper is due for publication in PNAS, but hadn't landed at the time of writing. However, in a 2014 publication in Nature Physics, Alù outlined a similar scheme and claimed six orders of magnitude non-reciprocity.

In that paper, Alù noted that since there's no need to modify the antennas, his techniques can be applied to antennas fabricated onto integrated circuits.

Beyond radio communications, the researchers want to investigate whether they can see similar behaviours all the way up to light, which would offer a path to make photovoltaics more efficient. ®

Similar topics


Other stories you might like

  • Talos names eight deadly sins in widely used industrial software
    Entire swaths of gear relies on vulnerability-laden Open Automation Software (OAS)

    A researcher at Cisco's Talos threat intelligence team found eight vulnerabilities in the Open Automation Software (OAS) platform that, if exploited, could enable a bad actor to access a device and run code on a targeted system.

    The OAS platform is widely used by a range of industrial enterprises, essentially facilitating the transfer of data within an IT environment between hardware and software and playing a central role in organizations' industrial Internet of Things (IIoT) efforts. It touches a range of devices, including PLCs and OPCs and IoT devices, as well as custom applications and APIs, databases and edge systems.

    Companies like Volvo, General Dynamics, JBT Aerotech and wind-turbine maker AES are among the users of the OAS platform.

    Continue reading
  • Despite global uncertainty, $500m hit doesn't rattle Nvidia execs
    CEO acknowledges impact of war, pandemic but says fundamentals ‘are really good’

    Nvidia is expecting a $500 million hit to its global datacenter and consumer business in the second quarter due to COVID lockdowns in China and Russia's invasion of Ukraine. Despite those and other macroeconomic concerns, executives are still optimistic about future prospects.

    "The full impact and duration of the war in Ukraine and COVID lockdowns in China is difficult to predict. However, the impact of our technology and our market opportunities remain unchanged," said Jensen Huang, Nvidia's CEO and co-founder, during the company's first-quarter earnings call.

    Those two statements might sound a little contradictory, including to some investors, particularly following the stock selloff yesterday after concerns over Russia and China prompted Nvidia to issue lower-than-expected guidance for second-quarter revenue.

    Continue reading
  • Another AI supercomputer from HPE: Champollion lands in France
    That's the second in a week following similar system in Munich also aimed at researchers

    HPE is lifting the lid on a new AI supercomputer – the second this week – aimed at building and training larger machine learning models to underpin research.

    Based at HPE's Center of Excellence in Grenoble, France, the new supercomputer is to be named Champollion after the French scholar who made advances in deciphering Egyptian hieroglyphs in the 19th century. It was built in partnership with Nvidia using AMD-based Apollo computer nodes fitted with Nvidia's A100 GPUs.

    Champollion brings together HPC and purpose-built AI technologies to train machine learning models at scale and unlock results faster, HPE said. HPE already provides HPC and AI resources from its Grenoble facilities for customers, and the broader research community to access, and said it plans to provide access to Champollion for scientists and engineers globally to accelerate testing of their AI models and research.

    Continue reading

Biting the hand that feeds IT © 1998–2022