fMRI bugs could upend years of research

This is what your brain looks like on bad data


A whole pile of “this is how your brain looks like” fMRI-based science has been potentially invalidated because someone finally got around to checking the data.

The problem is simple: to get from a high-resolution magnetic resonance imaging scan of the brain to a scientific conclusion, the brain is divided into tiny “voxels”. Software, rather than humans, then scans the voxels looking for clusters.

When you see a claim that “scientists know when you're about to move an arm: these images prove it”, they're interpreting what they're told by the statistical software.

Now, boffins from Sweden and the UK have cast doubt on the quality of the science, because of problems with the statistical software: it produces way too many false positives.

In this paper at PNAS, they write: “the most common software packages for fMRI analysis (SPM, FSL, AFNI) can result in false-positive rates of up to 70%. These results question the validity of some 40,000 fMRI studies and may have a large impact on the interpretation of neuroimaging results.”

For example, a bug that's been sitting in a package called 3dClustSim for 15 years, fixed in May 2015, produced bad results (3dClustSim is part of the AFNI suite; the others are SPM and FSL).

That's not a gentle nudge that some results might be overstated: it's more like making a bonfire of thousands of scientific papers.

Further: “Our results suggest that the principal cause of the invalid cluster inferences is spatial autocorrelation functions that do not follow the assumed Gaussian shape”.

The researchers used published fMRI results, and along the way they swipe the fMRI community for their “lamentable archiving and data-sharing practices” that prevent most of the discipline's body of work being re-analysed. ®

Similar topics


Other stories you might like

  • Robotics and 5G to spur growth of SoC industry – report
    Big OEMs hogging production and COVID causing supply issues

    The system-on-chip (SoC) side of the semiconductor industry is poised for growth between now and 2026, when it's predicted to be worth $6.85 billion, according to an analyst's report. 

    Chances are good that there's an SoC-powered device within arm's reach of you: the tiny integrated circuits contain everything needed for a basic computer, leading to their proliferation in mobile, IoT and smart devices. 

    The report predicting the growth comes from advisory biz Technavio, which looked at a long list of companies in the SoC market. Vendors it analyzed include Apple, Broadcom, Intel, Nvidia, TSMC, Toshiba, and more. The company predicts that much of the growth between now and 2026 will stem primarily from robotics and 5G. 

    Continue reading
  • Deepfake attacks can easily trick live facial recognition systems online
    Plus: Next PyTorch release will support Apple GPUs so devs can train neural networks on their own laptops

    In brief Miscreants can easily steal someone else's identity by tricking live facial recognition software using deepfakes, according to a new report.

    Sensity AI, a startup focused on tackling identity fraud, carried out a series of pretend attacks. Engineers scanned the image of someone from an ID card, and mapped their likeness onto another person's face. Sensity then tested whether they could breach live facial recognition systems by tricking them into believing the pretend attacker is a real user.

    So-called "liveness tests" try to authenticate identities in real-time, relying on images or video streams from cameras like face recognition used to unlock mobile phones, for example. Nine out of ten vendors failed Sensity's live deepfake attacks.

    Continue reading
  • Lonestar plans to put datacenters in the Moon's lava tubes
    How? Founder tells The Register 'Robots… lots of robots'

    Imagine a future where racks of computer servers hum quietly in darkness below the surface of the Moon.

    Here is where some of the most important data is stored, to be left untouched for as long as can be. The idea sounds like something from science-fiction, but one startup that recently emerged from stealth is trying to turn it into a reality. Lonestar Data Holdings has a unique mission unlike any other cloud provider: to build datacenters on the Moon backing up the world's data.

    "It's inconceivable to me that we are keeping our most precious assets, our knowledge and our data, on Earth, where we're setting off bombs and burning things," Christopher Stott, founder and CEO of Lonestar, told The Register. "We need to put our assets in place off our planet, where we can keep it safe."

    Continue reading

Biting the hand that feeds IT © 1998–2022