Your 90-second guide to new stuff Nvidia teased today: Volta V100 chips, a GPU cloud, and more

Various bits and bobs to break Intel's heart this year

GTC Today at Nvidia’s GPU Technology Conference in San Jose, California, CEO Jensen Huang paraded a bunch of forthcoming gear – all aimed at expanding the graphics chip giant’s reach in AI.

Or in other words, stealing a march on Intel's machine learning efforts: the x86 goliath is desperately bent on stopping Nvidia and others from expelling it from the artificial intelligence processing space.

Huang announced the Tesla Volta V100, a new GPU that tries to marry machine learning with high performance computing. It is equipped with 5,120 CUDA cores, 640 Tensor Cores, delivers 7.5 TFLOPS using 64-bit FP and 15 TFLOPS using 32-bit FP, and stocks a 16MB cache and 16GB HBM2 memory bank with a bandwidth of 900GB per second. The V100 GPU is “at the limits of photolithography,” we're told, packing together 21.1 billion transistors on 815mm2 of silicon. The chip is manufactured by TSMC using its 12nm FinFET process.

The Tesla V100 is a jump from Nvidia’s Pascal P100 GPU unveiled last year in terms of size and performance. Increasing computational power is needed as the demand to build bigger and more complex neural networks rises. The chip isn't out yet: it's due to arrive later this year. You can find more analysis on the V100 and its Volta architecture, here, on our high-performance computing sister website, The Next Platform.

Nvidia’s deep learning computer, the DGX-1, has been updated to support the new Tesla V100 GPUs, and each box will cost a whopping $149,000 with the latest silicon when it becomes available.

If that's a little much for your wallet, Nvidia is teasing a new GPU Cloud service that will enter public beta in the third quarter of this year. Part of this is a software stack that runs on PCs, workstations and servers, and assigns workloads to local GPUs, connected DGX-1 boxes, and processors hosted in Nvidia's forthcoming cloud, as needed. It supports Caffe, Caffe2, CNTK, MXNet, TensorFlow, Theano and Torch frameworks, Plus Nv's Digits, Deep Learning SDK, CUDA, and so on. This service is expected to rival GPU-in-the-cloud offerings from Amazon's AWS, Microsoft's Azure, and Google's compute cloud.

Meanwhile, the GPU giant is taking a greater interest in robotics with Isaac, a simulator platform, which is hoped to make it easier for developers to design and build robots using Nv's GPU technology.

Isaac is a virtual droid trained using reinforcement learning in an environment rendered by video game graphics technologies and integrated with OpenAI’s Universe. The idea is that several Isaacs can be trained at the same time, and the best agent can be chosen before it’s deployed for real-world testing.

Nvidia also announced updates for its biggest project: self-driving cars. Toyota, Japan’s largest automotive manufacturer, is collaborating with Nvidia to develop its Drive PX software platform for its driverless cars. Drive PX comes with a LIDAR sensor that allows cars to process their surroundings in real time and plan and execute preventive actions such as stopping the driver from accelerating at a green light.

The strangest project announced was Holodeck, a virtual reality environment that is, it is claimed, photo realistic and represents users as floating robot torsos. It uses a physics engine, and creators can import their virtual products into Holodeck to explore design options. In a demonstration, people could see into the interior of a virtual car. It's like the 1990s never ended. ®

Updated to add

The V100 can hit 120 "Tensor" TFLOPS, according to Nvidia. We wondered what a Tensor TFLOPS is. A spokesperson explained a Tensor floating-point operation is a "mixed-precision FP16/FP32 multiply-accumulate" calculation. "Tensor Cores add new specialized mixed-precision FMA operations that are separate from the existing FP32 and FP16 math operations," we're told. There's more info here.

Similar topics

Narrower topics

Other stories you might like

  • Nvidia wants to lure you to the Arm side with fresh server bait
    GPU giant promises big advancements with Arm-based Grace CPU, says the software is ready

    Interview 2023 is shaping up to become a big year for Arm-based server chips, and a significant part of this drive will come from Nvidia, which appears steadfast in its belief in the future of Arm, even if it can't own the company.

    Several system vendors are expected to push out servers next year that will use Nvidia's new Arm-based chips. These consist of the Grace Superchip, which combines two of Nvidia's Grace CPUs, and the Grace-Hopper Superchip, which brings together one Grace CPU with one Hopper GPU.

    The vendors lining up servers include American companies like Dell Technologies, HPE and Supermicro, as well Lenovo in Hong Kong, Inspur in China, plus ASUS, Foxconn, Gigabyte, and Wiwynn in Taiwan are also on board. The servers will target application areas where high performance is key: AI training and inference, high-performance computing, digital twins, and cloud gaming and graphics.

    Continue reading
  • Nvidia taps Intel’s Sapphire Rapids CPU for Hopper-powered DGX H100
    A win against AMD as a much bigger war over AI compute plays out

    Nvidia has chosen Intel's next-generation Xeon Scalable processor, known as Sapphire Rapids, to go inside its upcoming DGX H100 AI system to showcase its flagship H100 GPU.

    Jensen Huang, co-founder and CEO of Nvidia, confirmed the CPU choice during a fireside chat Tuesday at the BofA Securities 2022 Global Technology Conference. Nvidia positions the DGX family as the premier vehicle for its datacenter GPUs, pre-loading the machines with its software and optimizing them to provide the fastest AI performance as individual systems or in large supercomputer clusters.

    Huang's confirmation answers a question we and other observers have had about which next-generation x86 server CPU the new DGX system would use since it was announced in March.

    Continue reading
  • Lenovo reveals small but mighty desktop workstation
    ThinkStation P360 Ultra packs latest Intel Core processor, Nvidia RTX A5000 GPU, support for eight monitors

    Lenovo has unveiled a small desktop workstation in a new physical format that's smaller than previous compact designs, but which it claims still has the type of performance professional users require.

    Available from the end of this month, the ThinkStation P360 Ultra comes in a chassis that is less than 4 liters in total volume, but packs in 12th Gen Intel Core processors – that's the latest Alder Lake generation with up to 16 cores, but not the Xeon chips that we would expect to see in a workstation – and an Nvidia RTX A5000 GPU.

    Other specifications include up to 128GB of DDR5 memory, two PCIe 4.0 slots, up to 8TB of storage using plug-in M.2 cards, plus dual Ethernet and Thunderbolt 4 ports, and support for up to eight displays, the latter of which will please many professional users. Pricing is expected to start at $1,299 in the US.

    Continue reading
  • GPUs aren’t always your best bet, Twitter ML tests suggest
    Graphcore processor outperforms Nvidia rival in team's experiments

    GPUs are a powerful tool for machine-learning workloads, though they’re not necessarily the right tool for every AI job, according to Michael Bronstein, Twitter’s head of graph learning research.

    His team recently showed Graphcore’s AI hardware offered an “order of magnitude speedup when comparing a single IPU processor to an Nvidia A100 GPU,” in temporal graph network (TGN) models.

    “The choice of hardware for implementing Graph ML models is a crucial, yet often overlooked problem,” reads a joint article penned by Bronstein with Emanuele Rossi, an ML researcher at Twitter, and Daniel Justus, a researcher at Graphcore.

    Continue reading
  • Will optics ever replace copper interconnects? We asked this silicon photonics startup
    Star Trek's glowing circuit boards may not be so crazy

    Science fiction is littered with fantastic visions of computing. One of the more pervasive is the idea that one day computers will run on light. After all, what’s faster than the speed of light?

    But it turns out Star Trek’s glowing circuit boards might be closer to reality than you think, Ayar Labs CTO Mark Wade tells The Register. While fiber optic communications have been around for half a century, we’ve only recently started applying the technology at the board level. Despite this, Wade expects, within the next decade, optical waveguides will begin supplanting the copper traces on PCBs as shipments of optical I/O products take off.

    Driving this transition are a number of factors and emerging technologies that demand ever-higher bandwidths across longer distances without sacrificing on latency or power.

    Continue reading
  • Despite global uncertainty, $500m hit doesn't rattle Nvidia execs
    CEO acknowledges impact of war, pandemic but says fundamentals ‘are really good’

    Nvidia is expecting a $500 million hit to its global datacenter and consumer business in the second quarter due to COVID lockdowns in China and Russia's invasion of Ukraine. Despite those and other macroeconomic concerns, executives are still optimistic about future prospects.

    "The full impact and duration of the war in Ukraine and COVID lockdowns in China is difficult to predict. However, the impact of our technology and our market opportunities remain unchanged," said Jensen Huang, Nvidia's CEO and co-founder, during the company's first-quarter earnings call.

    Those two statements might sound a little contradictory, including to some investors, particularly following the stock selloff yesterday after concerns over Russia and China prompted Nvidia to issue lower-than-expected guidance for second-quarter revenue.

    Continue reading

Biting the hand that feeds IT © 1998–2022