Watch this nanochip reprogram cells to fix damaged body tissue

We can't think of anything snarky to say about this cool biological repair kit

Video Researchers at Ohio State University have developed a nanochip contact patch that can reprogram nearby cells, to help repair damaged or aging organs, blood vessels, or nerve cells.

The bio-boffins have successfully used the device, which is about the size of a smartwatch screen, to turn skin cells into vascular cells in a mouse's damaged leg, which lacked blood flow. A week later, active blood vessels had grown in the mouse's leg and two weeks later, the leg's health had been restored.

The researchers also reprogrammed skin cells to become nerve cells, so they could be injected into mice with brain damage to help them recover from the equivalent of a stroke.

The technology, referred to as tissue nano-transfection (TNT), is described in a paper published on Monday in Nature Nanotechnology, "Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue."

TNT has two components: a nanotechnology-based chip capable of delivering a payload to adult cells in a live subject and a biological cargo of specific proteins or genetic material that initiate cell conversion. Reprogramming relies on techniques involving induced neurons and endothelium.

Dr Chandan Sen, director of Ohio State's Center for Regenerative Medicine & Cell Based Therapies, is one of the 27 co-authors of the research paper and a co-leader of the study, along with L James Lee, professor of chemical and biomolecular engineering with Ohio State's College of Engineering.

Sen in a statement said the technology has reached the point where it is working successfully 98 per cent of the time. "With this technology, we can convert skin cells into elements of any organ with just one touch," he said. "This process only takes less than a second and is non-invasive, and then you're off."

A video produced by OSU's Wexner Medical Center, and embedded below, demonstrates the process. The chip is placed on an injured part of the body and a small electrical current is applied, shooting genetic code into the cells. In less than a second, cells in the area receive new marching orders and start functioning in their new role.

Youtube Video

"The chip does not stay with you, and the reprogramming of the cell starts," said Sen. "Our technology keeps the cells in the body under immune surveillance, so immune suppression is not necessary."

Human clinical trials are planned for next year. ®

Similar topics

Narrower topics

Other stories you might like

  • Microsoft's do-it-all IDE Visual Studio 2022 came out late last year. How good is it really?

    Top request from devs? A Linux version

    Review Visual Studio goes back a long way. Microsoft always had its own programming languages and tools, beginning with Microsoft Basic in 1975 and Microsoft C 1.0 in 1983.

    The Visual Studio idea came from two main sources. In the early days, Windows applications were coded and compiled using MS-DOS, and there was a MS-DOS IDE called Programmer's Workbench (PWB, first released 1989). The company also came up Visual Basic (VB, first released 1991), which unlike Microsoft C++ had a Windows IDE. Perhaps inspired by VB, Microsoft delivered Visual C++ 1.0 in 1993, replacing the little-used PWB. Visual Studio itself was introduced in 1997, though it was more of a bundle of different Windows development tools initially. The first Visual Studio to integrate C++ and Visual Basic (in .NET guise) development into the same IDE was Visual Studio .NET in 2002, 20 years ago, and this perhaps is the true ancestor of today's IDE.

    A big change in VS 2022, released November, is that it is the first version where the IDE itself runs as a 64-bit process. The advantage is that it has access to more than 4GB memory in the devenv process, this being the shell of the IDE, though of course it is still possible to compile 32-bit applications. The main benefit is for large solutions comprising hundreds of projects. Although a substantial change, it is transparent to developers and from what we can tell, has been a beneficial change.

    Continue reading
  • James Webb Space Telescope has arrived at its new home – an orbit almost a million miles from Earth

    Funnily enough, that's where we want to be right now, too

    The James Webb Space Telescope, the largest and most complex space observatory built by NASA, has reached its final destination: L2, the second Sun-Earth Lagrange point, an orbit located about a million miles away.

    Mission control sent instructions to fire the telescope's thrusters at 1400 EST (1900 UTC) on Monday. The small boost increased its speed by about 3.6 miles per hour to send it to L2, where it will orbit the Sun in line with Earth for the foreseeable future. It takes about 180 days to complete an L2 orbit, Amber Straughn, deputy project scientist for Webb Science Communications at NASA's Goddard Space Flight Center, said during a live briefing.

    "Webb, welcome home!" blurted NASA's Administrator Bill Nelson. "Congratulations to the team for all of their hard work ensuring Webb's safe arrival at L2 today. We're one step closer to uncovering the mysteries of the universe. And I can't wait to see Webb's first new views of the universe this summer."

    Continue reading
  • LG promises to make home appliance software upgradeable to take on new tasks

    Kids: empty the dishwasher! We can’t, Dad, it’s updating its OS to handle baked on grime from winter curries

    As the right to repair movement gathers pace, Korea’s LG has decided to make sure that its whitegoods can be upgraded.

    The company today announced a scheme called “Evolving Appliances For You.”

    The plan is sketchy: LG has outlined a scenario in which a customer who moves to a locale with climate markedly different to their previous home could use LG’s ThingQ app to upgrade their clothes dryer with new software that makes the appliance better suited to prevailing conditions and to the kind of fabrics you’d wear in a hotter or colder climes. The drier could also get new hardware to handle its new location. An image distributed by LG shows off the ability to change the tune a dryer plays after it finishes a load.

    Continue reading

Biting the hand that feeds IT © 1998–2022