Oh no, you're thinking, yet another cookie pop-up. Well, sorry, it's the law. We measure how many people read us, and ensure you see relevant ads, by storing cookies on your device. If you're cool with that, hit “Accept all Cookies”. For more info and to customize your settings, hit “Customize Settings”.

Review and manage your consent

Here's an overview of our use of cookies, similar technologies and how to manage them. You can also change your choices at any time, by hitting the “Your Consent Options” link on the site's footer.

Manage Cookie Preferences
  • These cookies are strictly necessary so that you can navigate the site as normal and use all features. Without these cookies we cannot provide you with the service that you expect.

  • These cookies are used to make advertising messages more relevant to you. They perform functions like preventing the same ad from continuously reappearing, ensuring that ads are properly displayed for advertisers, and in some cases selecting advertisements that are based on your interests.

  • These cookies collect information in aggregate form to help us understand how our websites are being used. They allow us to count visits and traffic sources so that we can measure and improve the performance of our sites. If people say no to these cookies, we do not know how many people have visited and we cannot monitor performance.

See also our Cookie policy and Privacy policy.

This article is more than 1 year old

Another AI attack, this time against 'black box' machine learning

The difference between George Clooney and Dustin Hoffman? Just a couple of pixels

Would you like to join the merry band of researchers breaking machine learning models? A trio of German researchers has published a tool designed to make it easier to craft adversarial models when you're attacking a “black box”.

Unlike adversarial models that attack AIs “from the inside”, attacks developed for black boxes could be used against closed system like autonomous cars, security (facial recognition, for example), or speech recognition (Alexa or Cortana).

The tool, called Foolbox, is currently under review for presentation at next year's International Conference on Learning Representations (kicking off at the end of April).

Wieland Brendel, Jonas Rauber and Matthias Bethge of the Eberhard Karls University Tubingen, Germany explained at arXiv that Foolbox is a “decision-based” attack called a boundary attack which “starts from a large adversarial perturbation and then seeks to reduce the perturbation while staying adversarial”.

Foolbox defeating celebrity ID

Foolbox tested against Clarifai's black-box AI

“Its basic operating principle – starting from a large perturbation and successively reducing it – inverts the logic of essentially all previous adversarial attacks. Besides being surprisingly simple, the boundary attack is also extremely flexible”, they wrote.

For example, “transfer-based attacks” have to be tested against the same training data as the models they're attacking, and need “cumbersome substitute models”.

Gradient-based attacks, the paper claimed, also need detailed knowledge about the target model, while score-based attacks need access to the target model's confidence scores.

The boundary attack, the paper said, only needs to see the final decision of a machine learning model – the class label it applies to an input, for example, or in a speech recognition model, the transcribed sentence.

Foolbox defeating logos

Foolbox tested against logos in the Clarifai black box

The researchers tested their attack using the Clarifai API, tricking it into mis-identifying celebrities and missing prominent logos. ®

 

Similar topics

TIP US OFF

Send us news


Other stories you might like