Samsung-backed gizmo may soon juice up your smartphone over the air

What a time to be alive

Wireless charging is becoming an ever more popular way to juice up consumer gadgets, but an international team of scientists may have figured out how to scrap the mat too.

Research by the Moscow Institute of Physics and Technology offers a way to wirelessly transfer power consistently over longer distances than conventional methods.

At present, wireless charging makes use of electromagnetic fields generated by induction coils that start working as soon as a supported device (such as a phone) comes into range.

The issue is that "in range" means "touching" and the strength of the field is inversely proportional to the distance between coils.

An alternative approach is far-field energy transfer, which requires two antennas, one sending electromagnetic waves to the other. The receiving antenna then converts this radiation into electric currents.

Boffins have often proposed the approach as a way of transferring solar power from orbiting satellites to Earth. Difficulties with the size of the ground-based receiver and practicalities of the conversion process have led the likes of Elon "say what you mean" Musk to react somewhat negatively to the idea. "Stab that bloody thing in the heart," he said.

A more practical use for far-field energy transmission is to allow charging without requiring proximity (for example, not having to remove a phone from a jacket pocket to charge it).

Coherently Enhanced Wireless Power Transfer (pic: Alex Krasnok, Denis G. Baranov, Andrey Generalov, Sergey Li, and Andrea Alu)

The problem lies with the receiving antenna sending some of the radiation back into the surrounding environment (Ʈf in the diagram). When the coupling constant of Ʈf and the coupling constant of the radiation transmitting to the connected circuit (Ʈw in the diagram) are balanced, the energy transfer to the circuit is maximised. Sw- is how much energy is actually going into the circuit. Sf is incident radiation, which re-radiates back into the environment.

However, obstructions or movements of the receiving device can result in the power received dropping substantially.

The antennas can be tuned to transfer energy with almost no loss of electrical power. However, as soon as the environment changes (an obstruction or a movement of the antenna), the amount of energy transferred drops off sharply as the coupling constant becomes unbalanced.

The approach of the team is to use the normally passive receiving antenna to send a signal with a particular phase and amplitude (Sw+ in the diagram) to enhance the wave transmission through interference. This brings the coupling constant back into balance.

Boffins reckon this auxiliary signal could be set automatically by a feedback loop.

To prove the theory, the team set up transmitting and receiving antennas 40cm apart and showed that even with a large mismatch in the coupling constant, the system was able to get back to the equivalent of a tuned power transfer.

While innovative, the technology has yet to impress. Morris Kesley, CTO of Witricity, told Physics: "There are other approaches for adjusting the [mismatch] on the device side to achieve better efficiency or increase received power, and I'm not yet convinced that it would be worthwhile trying to implement [this one]."

Other researchers have proposed scavenging energy from sources such as Wi-Fi networks to get a charge into devices.

The researchers themselves remain undeterred, concluding that "coherent signals sent from the receiving port of a WPT [wireless power transfer] system can largely enhance and control the power transfer efficiency".

With the likes of Samsung's Global Research Outreach organ supporting the study, there is a distinct possibility that this technology may yet make the leap from the lab bench. ®

Similar topics

Narrower topics

Other stories you might like

  • North Korea pulled in $400m in cryptocurrency heists last year – report

    Plus: FIFA 22 players lose their identity and Texas gets phony QR codes

    In brief Thieves operating for the North Korean government made off with almost $400m in digicash last year in a concerted attack to steal and launder as much currency as they could.

    A report from blockchain biz Chainalysis found that attackers were going after investment houses and currency exchanges in a bid to purloin funds and send them back to the Glorious Leader's coffers. They then use mixing software to make masses of micropayments to new wallets, before consolidating them all again into a new account and moving the funds.

    Bitcoin used to be a top target but Ether is now the most stolen currency, say the researchers, accounting for 58 per cent of the funds filched. Bitcoin accounted for just 20 per cent, a fall of more than 50 per cent since 2019 - although part of the reason might be that they are now so valuable people are taking more care with them.

    Continue reading
  • Tesla Full Self-Driving videos prompt California's DMV to rethink policy on accidents

    Plus: AI systems can identify different chess players by their moves and more

    In brief California’s Department of Motor Vehicles said it’s “revisiting” its opinion of whether Tesla’s so-called Full Self-Driving feature needs more oversight after a series of videos demonstrate how the technology can be dangerous.

    “Recent software updates, videos showing dangerous use of that technology, open investigations by the National Highway Traffic Safety Administration, and the opinions of other experts in this space,” have made the DMV think twice about Tesla, according to a letter sent to California’s Senator Lena Gonzalez (D-Long Beach), chair of the Senate’s transportation committee, and first reported by the LA Times.

    Tesla isn’t required to report the number of crashes to California’s DMV unlike other self-driving car companies like Waymo or Cruise because it operates at lower levels of autonomy and requires human supervision. But that may change after videos like drivers having to take over to avoid accidentally swerving into pedestrians crossing the road or failing to detect a truck in the middle of the road continue circulating.

    Continue reading
  • Alien life on Super-Earth can survive longer than us due to long-lasting protection from cosmic rays

    Laser experiments show their magnetic fields shielding their surfaces from radiation last longer

    Life on Super-Earths may have more time to develop and evolve, thanks to their long-lasting magnetic fields protecting them against harmful cosmic rays, according to new research published in Science.

    Space is a hazardous environment. Streams of charged particles traveling at very close to the speed of light, ejected from stars and distant galaxies, bombard planets. The intense radiation can strip atmospheres and cause oceans on planetary surfaces to dry up over time, leaving them arid and incapable of supporting habitable life. Cosmic rays, however, are deflected away from Earth, however, since it’s shielded by its magnetic field.

    Now, a team of researchers led by the Lawrence Livermore National Laboratory (LLNL) believe that Super-Earths - planets that are more massive than Earth but less than Neptune - may have magnetic fields too. Their defensive bubbles, in fact, are estimated to stay intact for longer than the one around Earth, meaning life on their surfaces will have more time to develop and survive.

    Continue reading

Biting the hand that feeds IT © 1998–2022