Boffins are building an open-source secure enclave on RISC-V

Open source trusted execution component expected this fall

At some point this fall, a team of researchers from MIT's CSAIL and UC Berkeley's EECS aim to deliver an initial version of an open source, formally verified, secure hardware enclave based on RISC-V architecture called Keystone.

"From a security community perspective, having trustworthy secure enclaves is really important for building secure systems," said Dawn Song, a professor of computer science at UC Berkeley and founder and CEO of Oasis Labs, in a phone interview with The Register. "You can say it's one of the holy grails in computer security."

Song just recently participated in a workshop to advance Keystone, involving technical experts from Facebook, Google, Intel, Microsoft, UC Berkeley, MIT, Stanford and the University of Washington, among other organizations.

Keystone is intended to be a component for building a trusted execution environment (TEE) that's isolated from the main processor to keep sensitive data safe. TEEs have become more important with the rise of public cloud providers and the proliferation of virtual machines and containers. Those running sensitive workloads on other people's hardware would prefer greater assurance that their data can be kept segregated and secure.

There are already a variety of security hardware technologies in the market: Intel has a set of instructions called Software Guard Extensions (SGX) that address secure enclaves in its chips. AMD has its Secure Processor and SEV. ARM has its TrustZone. And there are others.

But these are neither as impenetrable as their designers wish nor as open to review as cyber security professionals would like. The recently disclosed Foreshadow side-channel attack affecting Intel's SGX offers a recent example of the risk.

That's not say an open source secure element would be immune to such problems, but an open specification with source code would be more trustworthy because it could be scrutinized.

"All these solutions are closed source, so it's difficult to verify the security and correctness," said Song. "With the Keystone project, we'll enable a fully open source software and hardware stack."

RISC-V business

In addition, the RISC-V microarchitecture looks to be less vulnerable to side-channel attacks. As the RISC-V Foundation said following the disclosure of the Spectre and Meltdown vulnerabilities earlier this year, "No announced RISC-V silicon is susceptible, and the popular open-source RISC-V Rocket processor is unaffected as it does not perform memory accesses speculatively."

(The RISC-V Berkeley Out–of–Order Machine, or "BOOM" processor, supports branch speculation and branch prediction, so immunity to side-channel attacks should not be assumed.)

A backdoor in plain sight

The off-brand 'military-grade' x86 processors, in the library, with the root-granting 'backdoor'


RISC-V is relatively new to the scene, having been introduced back in 2010. Established chipmakers like ARM, however, view it as enough of a threat to attack it.

But its not yet clear whether makers of RISC-V hardware will go all-in on openness. Ronald Minnich, a software engineer at Google and one of the creators of coreboot, recently noted that HiFive RISC-V chips have proprietary pieces.

"I realize there was a lot of hope in the early days that RISC-V implied 'openness' but as we can see that is not so," he wrote in a mailing list message in June. "...Open instruction sets do not necessarily result in open implementations. An open implementation of RISC-V will require a commitment on the part of a company to opening it up at all levels, not just the instruction set."

RISC-V may end up being a transition to more secure chip designs that incorporate the lessons of Spectre, Meltdown and Foreshadow. According to Song, there was discussion at the workshop about "whether we can build a new hardware architecture from ground up." ®

Broader topics

Other stories you might like

  • Talos names eight deadly sins in widely used industrial software
    Entire swaths of gear relies on vulnerability-laden Open Automation Software (OAS)

    A researcher at Cisco's Talos threat intelligence team found eight vulnerabilities in the Open Automation Software (OAS) platform that, if exploited, could enable a bad actor to access a device and run code on a targeted system.

    The OAS platform is widely used by a range of industrial enterprises, essentially facilitating the transfer of data within an IT environment between hardware and software and playing a central role in organizations' industrial Internet of Things (IIoT) efforts. It touches a range of devices, including PLCs and OPCs and IoT devices, as well as custom applications and APIs, databases and edge systems.

    Companies like Volvo, General Dynamics, JBT Aerotech and wind-turbine maker AES are among the users of the OAS platform.

    Continue reading
  • Despite global uncertainty, $500m hit doesn't rattle Nvidia execs
    CEO acknowledges impact of war, pandemic but says fundamentals ‘are really good’

    Nvidia is expecting a $500 million hit to its global datacenter and consumer business in the second quarter due to COVID lockdowns in China and Russia's invasion of Ukraine. Despite those and other macroeconomic concerns, executives are still optimistic about future prospects.

    "The full impact and duration of the war in Ukraine and COVID lockdowns in China is difficult to predict. However, the impact of our technology and our market opportunities remain unchanged," said Jensen Huang, Nvidia's CEO and co-founder, during the company's first-quarter earnings call.

    Those two statements might sound a little contradictory, including to some investors, particularly following the stock selloff yesterday after concerns over Russia and China prompted Nvidia to issue lower-than-expected guidance for second-quarter revenue.

    Continue reading
  • Another AI supercomputer from HPE: Champollion lands in France
    That's the second in a week following similar system in Munich also aimed at researchers

    HPE is lifting the lid on a new AI supercomputer – the second this week – aimed at building and training larger machine learning models to underpin research.

    Based at HPE's Center of Excellence in Grenoble, France, the new supercomputer is to be named Champollion after the French scholar who made advances in deciphering Egyptian hieroglyphs in the 19th century. It was built in partnership with Nvidia using AMD-based Apollo computer nodes fitted with Nvidia's A100 GPUs.

    Champollion brings together HPC and purpose-built AI technologies to train machine learning models at scale and unlock results faster, HPE said. HPE already provides HPC and AI resources from its Grenoble facilities for customers, and the broader research community to access, and said it plans to provide access to Champollion for scientists and engineers globally to accelerate testing of their AI models and research.

    Continue reading

Biting the hand that feeds IT © 1998–2022