Bad news from science land: Fast-charging li-ion batteries may be quick to top up, but they're also quick to die

Today in current affairs...


Video Scientists studying the degradation of lithium-ion batteries believe fast charging will damage the power packs faster than one might expect.

Boffins at Purdue University in America say they made the discovery while conducting atomic-level scanning of fast-charging lithium-ion battery electrodes. The team, led by Kejie Zhao, an assistant professor of mechanical engineering, used multiple scanning techniques and computer-aided enhancements to take a deep dive into a particular power pack, and found what may be the Achilles' heel of fast charging.

Essentially, what happens is that fast charging seemingly damages the battery's electrode particles, forcing the device to lose capacity and shorten its lifespan. This degradation is caused by lithium ions whizzing between internal electrodes, we're told.

"These fast charging batteries are often decked out with thicker electrodes, but that doesn't prevent damage," explained Zhao this week. “The capacity of batteries doesn’t depend on how many particles are in the battery; what matters is how the lithium ions are used."

To study how the unnamed commercially available li-ion battery changed as it was charged and discharged, the team built a detailed 3D model of the device using imaging techniques described in two papers published in Advanced Energy Materials and the Journal of the Mechanics and Physics of Solids.

Here's, simply put, how it all came about. The team obtained a crude image of the lithium-ion battery using x-rays. These were generated at the European Synchrotron Radiation Facility and the Stanford Synchrotron Radiation Lightsource of SLAC National Laboratory. The lithium-ion battery was placed between the source of x-rays and a detector. The electromagnetic beams traced the outlines of the battery’s internal structure, and these scans were collected at the detector.

By scanning the battery at various angles, a series of 2D images was generated and stacked to create a 3D rendering. Specifically, the planar images were converted into three dimensions using a filtered backprojection algorithm. Ultimately, artificially intelligent systems allowed the researchers to pinpoint areas of damage, it is claimed.

li_ion_battery

3D model of a battery electrode after testing ... Image credit: Purdue University image/Kejie Zhao

According to Purdue Uni's Kayla Wiles:

Every time that a battery charges, lithium ions travel back and forth between a positive electrode and a negative electrode. These ions interact with particles in electrodes, causing them to crack and degrade over time. Electrode damage reduces a battery’s charging capacity.

The project's generated images and models are featured in this video, below:

Youtube Video

Trying to figure out ways to solve battery degradation is a major research problem that involves all areas of science. Before eggheads can begin to think of improving lithium-ion batteries, however, they need to understand the exact mechanism that leads to degradation. ®

Similar topics


Other stories you might like

  • Despite global uncertainty, $500m hit doesn't rattle Nvidia execs
    CEO acknowledges impact of war, pandemic but says fundamentals ‘are really good’

    Nvidia is expecting a $500 million hit to its global datacenter and consumer business in the second quarter due to COVID lockdowns in China and Russia's invasion of Ukraine. Despite those and other macroeconomic concerns, executives are still optimistic about future prospects.

    "The full impact and duration of the war in Ukraine and COVID lockdowns in China is difficult to predict. However, the impact of our technology and our market opportunities remain unchanged," said Jensen Huang, Nvidia's CEO and co-founder, during the company's first-quarter earnings call.

    Those two statements might sound a little contradictory, including to some investors, particularly following the stock selloff yesterday after concerns over Russia and China prompted Nvidia to issue lower-than-expected guidance for second-quarter revenue.

    Continue reading
  • Another AI supercomputer from HPE: Champollion lands in France
    That's the second in a week following similar system in Munich also aimed at researchers

    HPE is lifting the lid on a new AI supercomputer – the second this week – aimed at building and training larger machine learning models to underpin research.

    Based at HPE's Center of Excellence in Grenoble, France, the new supercomputer is to be named Champollion after the French scholar who made advances in deciphering Egyptian hieroglyphs in the 19th century. It was built in partnership with Nvidia using AMD-based Apollo computer nodes fitted with Nvidia's A100 GPUs.

    Champollion brings together HPC and purpose-built AI technologies to train machine learning models at scale and unlock results faster, HPE said. HPE already provides HPC and AI resources from its Grenoble facilities for customers, and the broader research community to access, and said it plans to provide access to Champollion for scientists and engineers globally to accelerate testing of their AI models and research.

    Continue reading
  • Workday nearly doubles losses as waves of deals pushed back
    Figures disappoint analysts as SaaSy HR and finance application vendor navigates economic uncertainty

    HR and finance application vendor Workday's CEO, Aneel Bhusri, confirmed deal wins expected for the three-month period ending April 30 were being pushed back until later in 2022.

    The SaaS company boss was speaking as Workday recorded an operating loss of $72.8 million in its first quarter [PDF] of fiscal '23, nearly double the $38.3 million loss recorded for the same period a year earlier. Workday also saw revenue increase to $1.43 billion in the period, up 22 percent year-on-year.

    However, the company increased its revenue guidance for the full financial year. It said revenues would be between $5.537 billion and $5.557 billion, an increase of 22 percent on earlier estimates.

    Continue reading

Biting the hand that feeds IT © 1998–2022