Arm gets edgy: Tiny neural-network accelerator offered for future smart speakers, light-bulbs, fridges, etc

Meet the Ethos-U55 and the Cortex-M55 for edge devices

Arm is aiming two new processing unit designs at slimline AI workloads in smart speakers and other Internet-of-Things devices.

The more powerful of the two, known as Cortex-M55, is a general microcontroller-grade CPU blueprint, while the other, named Ethos-U55, is essentially an AI accelerator. The Cortex-M55 is based on Arm's Helium technology and can perform vector calculations among other things. The Ethos-U55, on the other hand, is a novel architecture for Arm and has been described as a micro Neural Processing Unit, or micro-NPU for short.

Both processors are available now to license, and are intended to be used together, Thomas Ensergueix, senior director of the IoT & Embedded team at Arm, told The Register. The M55 running application code, the U55 doing all the neural-network mathematics in fast hardware. "The microNPU cannot be used on its own; it needs to be paired with a CPU like the Cortex-M55," he said. "Together, this system delivers 480X the performance compared to previous Cortex-M generations working on their own."

Arm only licenses the IP for its cores: to build a chip based on these processor cores, you must design your chip around Arm's technology, drop in Arm's IP, verify it all works as intended, and then send it off for manufacture by someone like TSMC or UMC. The Cortex-M55, paired with the Ethos-U55, is expected to run neural-network inference algorithms in small, low-power or embedded devices, allowing these gadgets to make predictions and decisions right where they are using AI without having to rely on a more powerful machine, say, in the cloud.

To fit this all into a small memory and silicon footprint, the microNPU can decompress trained INT8 models on the fly for inference. The architecture is thus suited for so-called "endpoint AI" applications, such as speech recognition or gesture detection in smart speakers and lights.

More complicated models that need to process data at higher precision, for things like facial or object recognition, will need beefier machine-learning accelerators like Arm's Ethos-N77 processor.

Deep-learning systems destined for these low-end microNPU-powered devices can be developed in any framework as long as it is eventually exported as a TensorFlow Lite or PyTorch Mobile model.

"Enabling AI everywhere requires device makers and developers to deliver machine learning locally on billions and ultimately trillions of devices," said Dipti Vachani, senior vice president and general manager, Automotive and IoT Line of Business, at Arm. "With these additions to our AI platform, no device is left behind as on-device ML on the tiniest devices will be the new normal, unleashing the potential of AI securely across a vast range of life-changing applications."

Folks can expect silicon using these blueprints to arrive early next year. ®

Broader topics

Other stories you might like

  • Despite global uncertainty, $500m hit doesn't rattle Nvidia execs
    CEO acknowledges impact of war, pandemic but says fundamentals ‘are really good’

    Nvidia is expecting a $500 million hit to its global datacenter and consumer business in the second quarter due to COVID lockdowns in China and Russia's invasion of Ukraine. Despite those and other macroeconomic concerns, executives are still optimistic about future prospects.

    "The full impact and duration of the war in Ukraine and COVID lockdowns in China is difficult to predict. However, the impact of our technology and our market opportunities remain unchanged," said Jensen Huang, Nvidia's CEO and co-founder, during the company's first-quarter earnings call.

    Those two statements might sound a little contradictory, including to some investors, particularly following the stock selloff yesterday after concerns over Russia and China prompted Nvidia to issue lower-than-expected guidance for second-quarter revenue.

    Continue reading
  • Another AI supercomputer from HPE: Champollion lands in France
    That's the second in a week following similar system in Munich also aimed at researchers

    HPE is lifting the lid on a new AI supercomputer – the second this week – aimed at building and training larger machine learning models to underpin research.

    Based at HPE's Center of Excellence in Grenoble, France, the new supercomputer is to be named Champollion after the French scholar who made advances in deciphering Egyptian hieroglyphs in the 19th century. It was built in partnership with Nvidia using AMD-based Apollo computer nodes fitted with Nvidia's A100 GPUs.

    Champollion brings together HPC and purpose-built AI technologies to train machine learning models at scale and unlock results faster, HPE said. HPE already provides HPC and AI resources from its Grenoble facilities for customers, and the broader research community to access, and said it plans to provide access to Champollion for scientists and engineers globally to accelerate testing of their AI models and research.

    Continue reading
  • Workday nearly doubles losses as waves of deals pushed back
    Figures disappoint analysts as SaaSy HR and finance application vendor navigates economic uncertainty

    HR and finance application vendor Workday's CEO, Aneel Bhusri, confirmed deal wins expected for the three-month period ending April 30 were being pushed back until later in 2022.

    The SaaS company boss was speaking as Workday recorded an operating loss of $72.8 million in its first quarter [PDF] of fiscal '23, nearly double the $38.3 million loss recorded for the same period a year earlier. Workday also saw revenue increase to $1.43 billion in the period, up 22 percent year-on-year.

    However, the company increased its revenue guidance for the full financial year. It said revenues would be between $5.537 billion and $5.557 billion, an increase of 22 percent on earlier estimates.

    Continue reading

Biting the hand that feeds IT © 1998–2022