There's a world out there with a hexagon vortex over its pole packed with hydrocarbon ice crystals. That planet is Saturn

Yet again, science reality is better than science fiction

The giant hexagon-shaped storm raging atop Saturn’s North Pole is made out of frozen hydrocarbon ice suspended in seven hazy layers stacked on top of one another, according to a study published in Nature Communications on Friday.

The swirling six-sided wonder, which El Reg once dubbed the hexacane, has perplexed scientists since its discovery in the 1980s by NASA’s Voyager 1 and 2 spacecraft. The strange vortex has sides measuring about 14,500 kilometres long – more than the diameter of Earth – and remains intact despite winds that reach 400 kilometres per hour rippling through the ringed giant.

Now, a group of astronomers have analysed images taken from NASA’s Cassini probe to reveal the hexacane’s tower-like structure in more detail.

"The Cassini images have enabled us to discover that, just as if a sandwich had been formed, the hexagon has a multi-layered system of at least seven mists that extend from the summit of its clouds to an altitude of more than 300 km above them," said Agustín Sánchez-Lavega, a physics professor at the University of Basque Country, Spain, who led the study. "Other cold worlds, such as Saturn's satellite Titan or the dwarf planet Pluto, also have layers of hazes, but not in such numbers nor as regularly spaced out".


A picture of the different layers in Saturn's hexagonal storm
Click to enlarge ... Image Credit: GCP/UPV/EHU/NASA/ESA

Each layer is estimated to be seven to 18 kilometres thick, and is made up of tiny micrometre-sized frozen hydrocarbon crystals, including propyne, propane, and diacetylene, and possibly acetylene and benzene at the top. Each particle is estimated to have a diameter of 0.07 to 1.4 micrometres. The layers appear hazy as the concentration of particles suspended in each one varies.

The team believes the stack is formed with the help of a powerful jet of wind that blows eastward. The particles settle in a layer depending on their density and the atmospheric temperature. A similar effect occurs on Earth, we're told.

The scientists hope to study any changes in the hexacane’s structure to see how it evolves over time. “Future research should explore microphysical models, the growth, and destruction mechanisms of the observed aerosols, and look for changes in the haze properties in relation to the seasonal insolation cycle,” they concluded. ®

Keep Reading

Tech Resources

How backup modernization changes the ransomware game

If the thrill of backing up your data and wondering if you will ever see it again has worn off, start the new year by getting rid of the lingering pain of legacy backup. Bipul Sinha, CEO of the Cloud Data Management Company, Rubrik, and Miguel Zatarain, Director of Global Infrastructure Technology at PACCAR, Fortune 500 manufacturer of trucks and Rubrik customer, are talking to the Reg’s Tim Phillips about how to eliminate the costly, slow and spotty performance of legacy backup, and how to modernize your implementation in 2021 to make your business more resilient.

The State of Application Security 2020

Forrester analyzed the state of application security in 2020 and found over 75% of external attacks are attributed to web application and software exploits.

Webcast Slide Deck | Three reasons you need a hybrid multicloud

Businesses need their IT teams to operate applications and data in a hybrid environment spanning on-premises private and public clouds. But this poses many challenges, such as managing complex networking, re-architecting applications for the cloud, and managing multiple infrastructure silos. There is a pressing need for a single platform that addresses these challenges - a hybrid multicloud built for the digital innovation era. Just this Regcast to find out: Why hybrid multicloud is the ideal path to accelerate cloud migration.

Top 20 Private Cloud Questions Answered

Download this asset for straight answers to your top private cloud questions.

Biting the hand that feeds IT © 1998–2021