Unprotected quantum 'puters may hit 4ms brick wall, thanks to background radiation slashing qubit lifespans

Get ready to armor up these systems, scientists warn

Non-shielded quantum computers may only be able to run for a few milliseconds before background radiation completely destabilizes the systems, according to lab experiments described in a paper published in Nature on Wednesday.

In 1999, quantum computers could only operate for less than a nanosecond. Fast forward more than 20 years, and today's systems can now last for around 200 microseconds. However, experimenters at MIT say about four milliseconds is going to be the absolute limit for today's technology – when not sufficiently radiation shielded – due to cosmic rays and emissions from radioactive materials all around us affecting the computers' qubits. Specifically, the radiation will cause the qubits to lose coherence.

"Ionizing radiation is all around us all the time," Antti Vepsäläinen, first author of the study and a postdoctoral associate at MIT, told The Register. "It arises from the decay or trace radioactive elements in our building materials, or in the cosmic rays that constantly shower the Earth from outer space.


AWS creates a quantum computing cloud with classical testbed plus rentable qubits


"These types of highly energetic radiation have enough energy to create ionized electron-hole pairs and energetic phonons in the materials which they hit. Those excitations then further interact with other particles in the materials, creating a 'shockwave' of energy propagating through the material, ultimately hitting the superconductor where the qubits reside."

Vepsäläinen recommended protecting the devices in layers of lead shielding or rad-hardening the circuits themselves. "Less [radiation] is always better," he added. "With the current levels of ionizing radiation in our laboratory, we estimated that the qubit lifetime is limited to four milliseconds because of the radiation."

Background radiation won't have a noticeable impact yet on modern quantum computers. The qubits simply do not exist in a coherent state long enough, and are often destabilized by other factors before ionizing particles have a chance to strike.

"Ionizing radiation is not the dominating decoherence mechanism in today's superconducting qubits, but it is important to study this effect," Vepsäläinen told us.

However, as quantum computers continue to improve, in a few years or so radiation will become a limiting factor to how long they can run. "These decoherence mechanisms are like an onion, and we've been peeling back the layers for [the] past 20 years, but there's another layer that left unabated is going to limit us in a couple years, which is environmental radiation," said William Oliver, co-author of the paper and an associate professor of electrical engineering at MIT.

There are multiple ways to protect quantum computers, from building them underground to fashioning the circuits from more radiation-resistant materials. "So it's definitely not game over, it's just the next layer of the onion we need to address," Oliver added. ®

Other stories you might like

  • Alcatel-Lucent Enterprise adds Wi-Fi 6E to 'premium' access points
    Company claims standard will improve performance in dense environments

    Alcatel-Lucent Enterprise is the latest networking outfit to add Wi-Fi 6E capability to its hardware, opening up access to the less congested 6GHz spectrum for business users.

    The France-based company just revealed the OmniAccess Stellar 14xx series of wireless access points, which are set for availability from this September. Alcatel-Lucent Enterprise said its first Wi-Fi 6E device will be a high-end "premium" Access Point and will be followed by a mid-range product by the end of the year.

    Wi-Fi 6E is compatible with the Wi-Fi 6 standard, but adds the ability to use channels in the 6GHz portion of the spectrum, a feature that will be built into the upcoming Wi-Fi 7 standard from the start. This enables users to reduce network contention, or so the argument goes, as the 6GHz portion of the spectrum is less congested with other traffic than the existing 2.4GHz and 5GHz frequencies used for Wi-Fi access.

    Continue reading
  • Will Lenovo ever think beyond hardware?
    Then again, why develop your own software à la HPE GreenLake when you can use someone else's?

    Analysis Lenovo fancies its TruScale anything-as-a-service (XaaS) platform as a more flexible competitor to HPE GreenLake or Dell Apex. Unlike its rivals, Lenovo doesn't believe it needs to mimic all aspects of the cloud to be successful.

    While subscription services are nothing new for Lenovo, the company only recently consolidated its offerings into a unified XaaS service called TruScale.

    On the surface TruScale ticks most of the XaaS boxes — cloud-like consumption model, subscription pricing — and it works just like you'd expect. Sign up for a certain amount of compute capacity and a short time later a rack full of pre-plumbed compute, storage, and network boxes are delivered to your place of choosing, whether that's a private datacenter, colo, or edge location.

    Continue reading
  • Intel is running rings around AMD and Arm at the edge
    What will it take to loosen the x86 giant's edge stranglehold?

    Analysis Supermicro launched a wave of edge appliances using Intel's newly refreshed Xeon-D processors last week. The launch itself was nothing to write home about, but a thought occurred: with all the hype surrounding the outer reaches of computing that we call the edge, you'd think there would be more competition from chipmakers in this arena.

    So where are all the AMD and Arm-based edge appliances?

    A glance through the catalogs of the major OEMs – Dell, HPE, Lenovo, Inspur, Supermicro – returned plenty of results for AMD servers, but few, if any, validated for edge deployments. In fact, Supermicro was the only one of the five vendors that even offered an AMD-based edge appliance – which used an ageing Epyc processor. Hardly a great showing from AMD. Meanwhile, just one appliance from Inspur used an Arm-based chip from Nvidia.

    Continue reading

Biting the hand that feeds IT © 1998–2022