US military employs neural networks to figure out interference in photons for quantum communications

Green Machine gets busy on photons

The US military is exploring how machine learning algorithms can clean up quantum communication technologies and help soldiers send encrypted messages to one another on the battlefield.

Tiny snippets of information can be stored as photons of light. The bits of data are encoded in the particle’s properties, like its polarization or phase. Reading the quantum information, however, can be tricky since photons tend to get distorted by environmental factors as they get transmitted.

Funded by the US Army Research Laboratory, a team of boffins led by Louisiana State University (LSU), have figured out a way to correct these distortions in order to preserve data stored in the photons using machine learning. First, the properties of single photons are captured and processed as images.

Changes in temperature and atmospheric pressure, however, can disrupt the photons and change these images. So the team built a database of imperfect images that describe the light profiles of photons that have been impacted by these distortions. By training a neural network on the original, high quality images and its degraded versions, it can learn to restore botched images.

Surprised cat photo via shutterstock

Useful quantum computers will be impossible without error correction. Good thing these folks are working on it


“These networks behave as an artificial brain that is trained with multiple distorted spatial profiles of photons produced by turbulence with different conditions, for example temperature,” Omar Magaña‐Loaiza, principal investigator of the experiment described in a paper published in Advanced Quantum Technologies, and an assistant professor of physics at LSU, explained to The Register.

“The neural network translates the distorted photon profiles to numbers that can be understood by a computer. These networks rely on a series of operations that enable the implementation of image filters: these filters are like those used for image recognition.”

In short, machine learning algorithms can learn to correct these distorted images - or photon profiles - to accurately recover the quantum information stored within it.

“In classical protocols for communication, people send strings of zeros and ones, these possibilities are represented by two states, that lead to the concept of a bit of information. In the quantum context, these bits are quantum states known as quantum bits or qubits,” he added.

“In our case, we have a larger alphabet; instead of using only zeros and ones, each single photon can be prepared in more than two states. These states are known as qudits.

"In the communication protocol used in our experiment, we send strings of qudits. By doing this, we can send more than one bit of information in a single photon. If there is an error, we correct it using artificial neural networks.”

If quantum information containing an encrypted message was stored as a single photon, the neural network can make sure that they’re decoded more accurately. The US military is interested in quantum communications for a number of reasons. In theory, it’s more secure than sending data through code, which could be cracked.

“Distributed quantum information and quantum networking research are still in their early stages,” Dr Sara Gamble, program manager, Quantum Information Sciences, at the Army Research Office, told us.

“The work described in this paper is particularly exciting because it shows enormous promise for overcoming a common type of distortion that befalls quantum information during its distribution. There are, however, many hurdles still left to overcome before most real world applications can be realized.” ®

Broader topics

Other stories you might like

  • Stolen university credentials up for sale by Russian crooks, FBI warns
    Forget dark-web souks, thousands of these are already being traded on public bazaars

    Russian crooks are selling network credentials and virtual private network access for a "multitude" of US universities and colleges on criminal marketplaces, according to the FBI.

    According to a warning issued on Thursday, these stolen credentials sell for thousands of dollars on both dark web and public internet forums, and could lead to subsequent cyberattacks against individual employees or the schools themselves.

    "The exposure of usernames and passwords can lead to brute force credential stuffing computer network attacks, whereby attackers attempt logins across various internet sites or exploit them for subsequent cyber attacks as criminal actors take advantage of users recycling the same credentials across multiple accounts, internet sites, and services," the Feds' alert [PDF] said.

    Continue reading
  • Big Tech loves talking up privacy – while trying to kill privacy legislation
    Study claims Amazon, Apple, Google, Meta, Microsoft work to derail data rules

    Amazon, Apple, Google, Meta, and Microsoft often support privacy in public statements, but behind the scenes they've been working through some common organizations to weaken or kill privacy legislation in US states.

    That's according to a report this week from news non-profit The Markup, which said the corporations hire lobbyists from the same few groups and law firms to defang or drown state privacy bills.

    The report examined 31 states when state legislatures were considering privacy legislation and identified 445 lobbyists and lobbying firms working on behalf of Amazon, Apple, Google, Meta, and Microsoft, along with industry groups like TechNet and the State Privacy and Security Coalition.

    Continue reading
  • SEC probes Musk for not properly disclosing Twitter stake
    Meanwhile, social network's board rejects resignation of one its directors

    America's financial watchdog is investigating whether Elon Musk adequately disclosed his purchase of Twitter shares last month, just as his bid to take over the social media company hangs in the balance. 

    A letter [PDF] from the SEC addressed to the tech billionaire said he "[did] not appear" to have filed the proper form detailing his 9.2 percent stake in Twitter "required 10 days from the date of acquisition," and asked him to provide more information. Musk's shares made him one of Twitter's largest shareholders. The letter is dated April 4, and was shared this week by the regulator.

    Musk quickly moved to try and buy the whole company outright in a deal initially worth over $44 billion. Musk sold a chunk of his shares in Tesla worth $8.4 billion and bagged another $7.14 billion from investors to help finance the $21 billion he promised to put forward for the deal. The remaining $25.5 billion bill was secured via debt financing by Morgan Stanley, Bank of America, Barclays, and others. But the takeover is not going smoothly.

    Continue reading

Biting the hand that feeds IT © 1998–2022