Wanna use your Nvidia GPU for acceleration but put off by CUDA? OpenAI has a Python-based alternative

Plus: Software-detected gunshot withdrawn as evidence from trial

In brief If you’ve always wanted to program your Nvidia GPU to accelerate machine learning, image processing, and other workloads, but find Nv's CUDA too daunting or too much of a faff to learn, you’re in luck.

OpenAI late last month released Triton, a Python-based environment that tries to help developers write and compile code to run on your Nvidia GPU much more easily without having to grapple with CUDA.

The San Francisco upstart has been using Triton to optimize their software so that their machine-learning algorithms run more efficiently on specialized hardware. Building state-of-the-art models is costly, developers have to be able to train and tweak their performance quickly, which requires writing custom GPU kernels.

“We’re releasing Triton 1.0, an open-source Python-like programming language which enables researchers with no CUDA experience to write highly efficient GPU code—most of the time on par with what an expert would be able to produce,” OpenAI said. “Triton makes it possible to reach peak hardware performance with relatively little effort; for example, it can be used to write FP16 matrix multiplication kernels that match the performance of cuBLAS — something that many GPU programmers can’t do—in under 25 lines of code.”

You can read more about Triton and its documentation here. Support for other GPUs, such as AMD's, is said to be coming.

Twitter has offered a bounty for anyone who can find biases in its algorithms, as seen with its image-cropping tool that favored White people and women.

Evidence of computer-detected gunshot withdrawn from trial

Prosecutors in America have withdrawn from a murder trial evidence of what was said to be a gunshot detected by classification algorithms.

One evening in May last year, Safarian Herring, 25, was shot in the head, and died two days later in hospital. Michael Williams, 64 at the time, was charged with his slaying, and denies any wrongdoing: he said Herring was killed by someone else in a drive-by shooting. Williams was said to have brought Herring to St Bernard Hospital in Chicago.

Cities in the United States have a system built by ShotSpotter dotted around their streets; this consists of microphones attached to computer systems programmed to identify the sound of gunfire and automatically alert the cops to the location.

One of the pieces of evidence against Williams claims ShotSpotter's sensors in Chicago identified gunfire where surveillance cameras had seen Williams stop his car by a south-side Chicago block, right when and where the cops said Herring was shot.

However, Williams’ lawyer submitted paperwork [PDF] claiming ShotSpotter actually detected a firework a mile away from that location, and that ShotSpotter later reclassified the bang as a gunshot and the location as being where Williams was seen on camera, Vice first reported.

Williams' lawyer demanded the court hold an inquiry into the ShotSpotter evidence, and the prosecutors simply withdrew it.

ShotSpotter responded by denying at length it improperly altered any data or evidence, and hit back at any suggestion it had done so to help the police make a case. It said its software generates real-time alerts automatically, and staff later analyze the microphone readings to submit forensic reports for the courts, and these final reports can therefore differ from the initial alerts.

"The idea that ShotSpotter 'alters' or 'fabricates' evidence in any way is an outrageous lie and would be a criminal offense," it said in a statement. "We follow the facts and data for our forensic analysis. Period."

Update: The case against Williams was dismissed by the judge at the request of the prosecution, which admitted it now had insufficient evidence. Williams had spent the best part of a year in jail awaiting trial.

Apple Watch data problematic for health study

Algorithms used to monitor things like heart rate and sleep patterns running on Apple Watches may not be useful in academic research.

JP Onnela, an associate professor of biostatistics at the public health school arm of Harvard University, discovered this the hard way when he asked his collaborator Hassan Dawood, a research fellow at Brigham and Women’s Hospital, to upload his heart rate data recorded by his Apple Watch.

To his surprise, when they exported data twice from the same samples taken over the same time period they discovered a big discrepancy between the recordings. The same heart rate reading exported once on September 5, 2020 and, again, on April 15, 2021 should be the same but they were different.

Onnela reckons Apple’s code could be to blame. “These algorithms are what we would call black boxes — they’re not transparent. So it’s impossible to know what’s in them,” he told The Verge. The lack of transparency means Apple may have tweaked its software, making it difficult for the researchers to trust the data collected by the iGiant's devices.

Apple, however, said there wasn’t an issue with its algorithms and that the issue probably lies in the exportation process. Either way, the errors show that it’s probably not a trustworthy source of data that should be used for academic purposes.

You can read more about the experiment here. ®

Other stories you might like

  • Tesla driver charged with vehicular manslaughter after deadly Autopilot crash

    Prosecution seems to be first of its kind in America

    A Tesla driver has seemingly become the first person in the US to be charged with vehicular manslaughter for a deadly crash in which the vehicle's Autopilot mode was engaged.

    According to the cops, the driver exited a highway in his Tesla Model S, ran a red light, and smashed into a Honda Civic at an intersection in Gardena, Los Angeles County, in late 2019. A man and woman in the second car were killed. The Tesla driver and a passenger survived and were taken to hospital.

    Prosecutors in California charged Kevin George Aziz Riad, 27, in October last year though details of the case are only just emerging, according to AP on Tuesday. Riad, a limousine service driver, is facing two counts of vehicular manslaughter, and is free on bail after pleading not guilty.

    Continue reading
  • AMD returns to smartphone graphics with new Samsung chip for your pocket computer

    We're back in black

    AMD's GPU technology is returning to mobile handsets with Samsung's Exynos 2200 system-on-chip, which was announced on Tuesday.

    The Exynos 2200 processor, fabricated using a 4nm process, has Armv9 CPU cores and the oddly named Xclipse GPU, which is an adaptation of AMD's RDNA 2 mainstream GPU architecture.

    AMD was in the handheld GPU market until 2009, when it sold the Imageon GPU and handheld business for $65m to Qualcomm, which turned the tech into the Adreno GPU for its Snapdragon family. AMD's Imageon processors were used in devices from Motorola, Panasonic, Palm and others making Windows Mobile handsets.

    Continue reading
  • Big shock: Guy who fled political violence and became rich in tech now struggles to care about political violence

    'I recognize that I come across as lacking empathy,' billionaire VC admits

    Billionaire tech investor and ex-Facebook senior executive Chamath Palihapitiya was publicly blasted after he said nobody really cares about the reported human rights abuse of Uyghur Muslims in China.

    The blunt comments were made during the latest episode of All-In, a podcast in which Palihapitiya chats to investors and entrepreneurs Jason Calacanis, David Sacks, and David Friedberg about technology.

    The group were debating the Biden administration’s response to what's said to be China's crackdown of Uyghur Muslims when Palihapitiya interrupted and said: “Nobody cares about what’s happening to the Uyghurs, okay? ... I’m telling you a very hard ugly truth, okay? Of all the things that I care about … yes, it is below my line.”

    Continue reading

Biting the hand that feeds IT © 1998–2022