DRAM, it stacks up: SK hynix rolls out 819GB/s HBM3 tech

Kit using the chips to appear next year at the earliest


Korean DRAM fabber SK hynix has developed an HBM3 DRAM chip operating at 819GB/sec.

HBM3 (High Bandwidth Memory 3) is a third generation of the HBM architecture which stacks DRAM chips one above another, connects them by vertical current-carrying holes called Through Silicon Vias (TSVs) to a base interposer board, via connecting micro-bumps, upon which is fastened a processor that accesses the data in the DRAM chip faster than it would through the traditional CPU socket interface.

Seon-yong Cha, SK hynix's senior vice president for DRAM development, said: "Since its launch of the world's first HBM DRAM, SK hynix has succeeded in developing the industry's first HBM3 after leading the HBM2E market. We will continue our efforts to solidify our leadership in the premium memory market."

Schematic

Schematic diagram of high bandwidth memory

The previous generations were HBM, HBM2 and HBM2E (Enhanced or Extended), with JEDEC developing standards for each. It has not yet developed an HBM3 standard, which means that SK hynix might need to retrofit its design to a future and faster HBM3 standard.

HBM memory speeds. The rightmost column its a possible future HBM3 standard and the empty column is our guesstimated SK hynix HMB3 I/O speed.

The rightmost column its a possible future HBM3 standard and the empty column is our guess-timated SK hynix HMB3 I/O speed

The 819GB/sec speed is a 78 per cent increase on the firm's HBM2e chip speed of 460GB/sec. SK hynix used 8 x 16Gbit layers in its 16GB HBM2e chip. The HBM3 chip comes in 24GB and 16GB capacities with the 24GB chip having a 12-layer stack.

The company says its engineers ground their DRAM chip height to approximately 30 micrometer (μm, 10-6m), equivalent to a third of an A4 paper's thickness, before vertically stacking up to 12 of them using TSV technology.

Underside (Interposer side) of Sk hynix HBM3 chip.

Underside (Interposer side) of the SK hynix HBM3 chip

Producing an HBM3 chip is only half, so to speak, of what needs to be done, since it has to be fixed to an interposer-processor combo and that needs to be built to accommodate the memory component.

Building an HBM-interposer-processor combo will generally only be done for applications that need more memory capacity and speed than that provided by industry-standard server CPUs and their socket scheme. That means supercomputers, HPC systems, GPU servers, AI systems and the like where the expense and specialisation (restricted market) is worthwhile.

We might expect systems using SK hynix's HBM3 to appear after mid-2022 and in 2023. ®

Similar topics


Other stories you might like

  • India reveals home-grown server that won't worry the leading edge

    And a National Blockchain Strategy that calls for gov to host BaaS

    India's government has revealed a home-grown server design that is unlikely to threaten the pacesetters of high tech, but (it hopes) will attract domestic buyers and manufacturers and help to kickstart the nation's hardware industry.

    The "Rudra" design is a two-socket server that can run Intel's Cascade Lake Xeons. The machines are offered in 1U or 2U form factors, each at half-width. A pair of GPUs can be equipped, as can DDR4 RAM.

    Cascade Lake emerged in 2019 and has since been superseded by the Ice Lake architecture launched in April 2021. Indian authorities know Rudra is off the pace, and said a new design capable of supporting four GPUs is already in the works with a reveal planned for June 2022.

    Continue reading
  • Prisons transcribe private phone calls with inmates using speech-to-text AI

    Plus: A drug designed by machine learning algorithms to treat liver disease reaches human clinical trials and more

    In brief Prisons around the US are installing AI speech-to-text models to automatically transcribe conversations with inmates during their phone calls.

    A series of contracts and emails from eight different states revealed how Verus, an AI application developed by LEO Technologies and based on a speech-to-text system offered by Amazon, was used to eavesdrop on prisoners’ phone calls.

    In a sales pitch, LEO’s CEO James Sexton told officials working for a jail in Cook County, Illinois, that one of its customers in Calhoun County, Alabama, uses the software to protect prisons from getting sued, according to an investigation by the Thomson Reuters Foundation.

    Continue reading
  • Battlefield 2042: Please don't be the death knell of the franchise, please don't be the death knell of the franchise

    Another terrible launch, but DICE is already working on improvements

    The RPG Greetings, traveller, and welcome back to The Register Plays Games, our monthly gaming column. Since the last edition on New World, we hit level cap and the "endgame". Around this time, item duping exploits became rife and every attempt Amazon Games made to fix it just broke something else. The post-level 60 "watermark" system for gear drops is also infuriating and tedious, but not something we were able to address in the column. So bear these things in mind if you were ever tempted. On that note, it's time to look at another newly released shit show – Battlefield 2042.

    I wanted to love Battlefield 2042, I really did. After the bum note of the first-person shooter (FPS) franchise's return to Second World War theatres with Battlefield V (2018), I stupidly assumed the next entry from EA-owned Swedish developer DICE would be a return to form. I was wrong.

    The multiplayer military FPS market is dominated by two forces: Activision's Call of Duty (COD) series and EA's Battlefield. Fans of each franchise are loyal to the point of zealotry with little crossover between player bases. Here's where I stand: COD jumped the shark with Modern Warfare 2 in 2009. It's flip-flopped from WW2 to present-day combat and back again, tried sci-fi, and even the Battle Royale trend with the free-to-play Call of Duty: Warzone (2020), which has been thoroughly ruined by hackers and developer inaction.

    Continue reading

Biting the hand that feeds IT © 1998–2021