Scientists make spin ice breakthrough

Artificial spin ice with smallest features ever created could be part of novel low-power HPC


Researchers at the Paul Scherrer Institute and ETH Zurich in Switzerland have managed to accomplish a technological breakthrough that could lead to new forms of low-energy supercomputing.

It's based around something called artificial spin ice: think of water molecules freezing into a crystalline lattice of ice, and then replace the water with nanoscale magnets. The key to building a good spin ice is getting the magnetic particles so small that they can only be polarized, or "spun," by dropping them below a certain temperature. 

When those magnets are frozen, they align into a lattice shape, just like water ice, but with the added potential of being rearranged into a near infinity of magnetic combinations. Here the use cases begin to emerge, and a couple breakthroughs from this experiment could move us in the right direction.

The discovery, made by PSI physicist Kevin Hofhuis and PSI researchers/ETH Zurich professors Laura Heyderman and Peter Derlet, could pave the way for low-energy HPC applications with additional potential uses in reservoir computing, which involves using fixed linear systems of a higher dimension than the input for signal mapping. "There are many areas where reservoir computing can be applied including prediction of weather and financial markets, image and speech recognition, and robotics," Hofhuis said. 

Heyderman even speculated that a high-speed, low-power spin ice supercomputer could be akin to the human brain: "The process is based on the information processing in the brain and takes advantage of how the artificial spin ice reacts to a stimulus such as a magnetic field or an electric current."

The science behind spin ice

To be clear, this lays groundwork, but spin ice supercomputers aren't in the immediate future. That hasn't stopped researchers from speculating on how spin ice and the manipulation of phase transitions can be used. 

"Mag­netic phase trans­itions had been the­or­et­ic­ally pre­dicted for ar­ti­fi­cial kagome spin ice, but they have never been ob­served be­fore," said Hey­derman, who has been researching and publishing on spin ices for over a decade. 

For this experiment, a nickel-iron compound called permalloy was spread onto a silicon substrate, which was then lithographed in a hexagonal pattern, each connected via tiny bridges, which were key in enabling them to tune and observe the phase transition. 

As Hofhuis explains, each magnet in the kagome form (one ring consists of six magnets) has two alignments, which means 64 potential magnetic states. Two rings increases that to more than 2,000 possible states, and so on. "There is an unimaginably huge number of magnetic states available in our large arrays, which have several thousands of nanomagnets," Hofhuis said. 

The experimental team made two big breakthroughs: It built nanoscale magnet bridges between the magnets, making their responses more predictable, and verified how the magnetic states of the nanomagnets in an array evolve over time. That latter discovery required a special microscope and an x-ray synchrotron, but let them see the actual phase transitions in the spin ice. 

Those bridges were only 10nm wide (a human hair is around 70,000nm), and the researchers were able to capture videos of the interaction of the nanomagnets, but were unable to do anything beyond deduce the configuration of the magnetic "spins" that occur in the moment of phase transition. 

Hofhuis said that he needed simulations designed by Derlet to prove what he was recording was a phase change. "Only the com­par­ison of the re­cor­ded im­ages with these sim­u­la­tions proved that the pro­cesses ob­served un­der the mi­cro­scope ac­tu­ally are phase trans­itions," Hofhuis said. 

At the end of the day, the researchers produced and measured artificial kagome spin ice that was made with small enough features to do what spin ice is supposed to: only form through temperature-induced magnetic phase transitions. Supercomputing with it will take a bit more time. ®

Editor's note: An earlier revision of this article stated the bridge was 10 microns thick, not 10nm wide, and Laura Heyderman's name was incorrectly spelled. We're grateful to Kevin Hofhuis and Laura Heyderman for their help in clarifying this.

Broader topics


Other stories you might like

  • Quantum internet within grasp as scientists show off entanglement demo
    Teleportation of quantum information key to future secure data transfer

    Researchers in the Netherlands have shown they can transmit quantum information via an intermediary node, a feature necessary to make the so-called quantum internet possible.

    In recent years, scientists have argued that the quantum internet presents a more desirable network for transferring secure data, in addition to being necessary when connecting multiple quantum systems. All of this has been attracting investment from the US government, among others.

    Despite the promise, there are still vital elements missing for the creation of a functional quantum internet.

    Continue reading
  • Drone ship carrying yet more drones launches in China
    Zhuhai Cloud will carry 50 flying and diving machines it can control with minimal human assistance

    Chinese academics have christened an ocean research vessel that has a twist: it will sail the seas with a complement of aerial and ocean-going drones and no human crew.

    The Zhu Hai Yun, or Zhuhai Cloud, launched in Guangzhou after a year of construction. The 290-foot-long mothership can hit a top speed of 18 knots (about 20 miles per hour) and will carry 50 flying, surface, and submersible drones that launch and self-recover autonomously. 

    According to this blurb from the shipbuilder behind its construction, the Cloud will also be equipped with a variety of additional observational instruments "which can be deployed in batches in the target sea area, and carry out task-oriented adaptive networking to achieve three-dimensional view of specific targets." Most of the ship is an open deck where flying drones can land and be stored. The ship is also equipped with launch and recovery equipment for its aquatic craft. 

    Continue reading
  • Experts: AI should be recognized as inventors in patent law
    Plus: Police release deepfake of murdered teen in cold case, and more

    In-brief Governments around the world should pass intellectual property laws that grant rights to AI systems, two academics at the University of New South Wales in Australia argued.

    Alexandra George, and Toby Walsh, professors of law and AI, respectively, believe failing to recognize machines as inventors could have long-lasting impacts on economies and societies. 

    "If courts and governments decide that AI-made inventions cannot be patented, the implications could be huge," they wrote in a comment article published in Nature. "Funders and businesses would be less incentivized to pursue useful research using AI inventors when a return on their investment could be limited. Society could miss out on the development of worthwhile and life-saving inventions."

    Continue reading
  • SEC probes Musk for not properly disclosing Twitter stake
    Meanwhile, social network's board rejects resignation of one its directors

    America's financial watchdog is investigating whether Elon Musk adequately disclosed his purchase of Twitter shares last month, just as his bid to take over the social media company hangs in the balance. 

    A letter [PDF] from the SEC addressed to the tech billionaire said he "[did] not appear" to have filed the proper form detailing his 9.2 percent stake in Twitter "required 10 days from the date of acquisition," and asked him to provide more information. Musk's shares made him one of Twitter's largest shareholders. The letter is dated April 4, and was shared this week by the regulator.

    Musk quickly moved to try and buy the whole company outright in a deal initially worth over $44 billion. Musk sold a chunk of his shares in Tesla worth $8.4 billion and bagged another $7.14 billion from investors to help finance the $21 billion he promised to put forward for the deal. The remaining $25.5 billion bill was secured via debt financing by Morgan Stanley, Bank of America, Barclays, and others. But the takeover is not going smoothly.

    Continue reading
  • Cloud security unicorn cuts 20% of staff after raising $1.3b
    Time to play blame bingo: Markets? Profits? Too much growth? Russia? Space aliens?

    Cloud security company Lacework has laid off 20 percent of its employees, just months after two record-breaking funding rounds pushed its valuation to $8.3 billion.

    A spokesperson wouldn't confirm the total number of employees affected, though told The Register that the "widely speculated number on Twitter is a significant overestimate."

    The company, as of March, counted more than 1,000 employees, which would push the jobs lost above 200. And the widely reported number on Twitter is about 300 employees. The biz, based in Silicon Valley, was founded in 2015.

    Continue reading
  • Talos names eight deadly sins in widely used industrial software
    Entire swaths of gear relies on vulnerability-laden Open Automation Software (OAS)

    A researcher at Cisco's Talos threat intelligence team found eight vulnerabilities in the Open Automation Software (OAS) platform that, if exploited, could enable a bad actor to access a device and run code on a targeted system.

    The OAS platform is widely used by a range of industrial enterprises, essentially facilitating the transfer of data within an IT environment between hardware and software and playing a central role in organizations' industrial Internet of Things (IIoT) efforts. It touches a range of devices, including PLCs and OPCs and IoT devices, as well as custom applications and APIs, databases and edge systems.

    Companies like Volvo, General Dynamics, JBT Aerotech and wind-turbine maker AES are among the users of the OAS platform.

    Continue reading
  • Despite global uncertainty, $500m hit doesn't rattle Nvidia execs
    CEO acknowledges impact of war, pandemic but says fundamentals ‘are really good’

    Nvidia is expecting a $500 million hit to its global datacenter and consumer business in the second quarter due to COVID lockdowns in China and Russia's invasion of Ukraine. Despite those and other macroeconomic concerns, executives are still optimistic about future prospects.

    "The full impact and duration of the war in Ukraine and COVID lockdowns in China is difficult to predict. However, the impact of our technology and our market opportunities remain unchanged," said Jensen Huang, Nvidia's CEO and co-founder, during the company's first-quarter earnings call.

    Those two statements might sound a little contradictory, including to some investors, particularly following the stock selloff yesterday after concerns over Russia and China prompted Nvidia to issue lower-than-expected guidance for second-quarter revenue.

    Continue reading
  • Another AI supercomputer from HPE: Champollion lands in France
    That's the second in a week following similar system in Munich also aimed at researchers

    HPE is lifting the lid on a new AI supercomputer – the second this week – aimed at building and training larger machine learning models to underpin research.

    Based at HPE's Center of Excellence in Grenoble, France, the new supercomputer is to be named Champollion after the French scholar who made advances in deciphering Egyptian hieroglyphs in the 19th century. It was built in partnership with Nvidia using AMD-based Apollo computer nodes fitted with Nvidia's A100 GPUs.

    Champollion brings together HPC and purpose-built AI technologies to train machine learning models at scale and unlock results faster, HPE said. HPE already provides HPC and AI resources from its Grenoble facilities for customers, and the broader research community to access, and said it plans to provide access to Champollion for scientists and engineers globally to accelerate testing of their AI models and research.

    Continue reading

Biting the hand that feeds IT © 1998–2022